平成 16 年度竜串地区 自然再生推進計画調査 (泥土処理実証試験)業務

報告書

平成17年3月

目 次

1		序	章								
	1	. 1 .	適用					 	 	1 -	-1
	1	. 2 .	業務	名				 	 	1 -	-1
	1	. 3 .	実施	期間				 	 	1 -	-1
	1	. 4 .	業務	目的				 	 	1 -	-1
	1	. 5 .	対象	地点				 	 	1 -	-2
	1	. 6 .	業務	フロー				 	 	1 -	-5
2		浚渫	試験								
	2	. 1 .	試験	目的				 	 	2 -	-1
	2	. 2 .	試験	フロー				 	 	2 -	-2
	2	. 3 .	試験	対象海域				 	 	2 -	-3
	2	. 4 .	海底	伏況調査エ	程			 	 	2 -	-4
		2 . 4	. 1 .	泥土堆積	状況σ)変化		 	 	2 -	-4
		2 . 4	. 2 .	調査方法				 	 	2 -	-5
		2 . 4	. 3 .	調査地点	の位置	量及び均	也形	 	 	2 -	-5
		2 . 4	. 4 .	調査結果				 	 	2 -	-6
		2 . 4	. 5 .	試験区域				 	 - 2	-1	1
		2 . 4	. 6 .	考察 -				 	 - 2	-1	7
	2	. 5 .	浚渫	工事工程				 	 -2	-1	8
		2 . 5	. 1 .	浚渫方法				 	 -2	-1	8
		2.5	. 2 .	潜水方法				 	 - 2	-1	9

2.5.3. サクションヘッド形状2-2-20
2.5.4. 試験内容2-2 3
2.5.5. 試験状況2-2-2 4
2.5.6. 試験結果2-2-2 9
2.5.7. 考察2-60
2.6. 仮設工事工程2-62
2.6.1. 仮設配管仕様2-62
2.6.2. 仮設配管ルート及び配管延長2-62
2.6.3. 仮設配管布設・撤去方法2-63
2.6.4. 仮設配管の布設・撤去状況写真2-65
2.6.5. 仮設配管の布設・撤去状況2-66
2.7. まとめ2-67
2 . 7 . 1 . 結論2 -6 7
2 . 7 . 2 . 課題点2 -6 7
3. 水処理試験
3 . 1 . 試験目的3 -1
3.2. 水処理試験フロー3-2
3.3. 水処理フロー3-3
3 . 4 . 機器配置図3 -4
3.5. 水処理機器の選定計画3-5
3 . 6 . 水処理試験状況3 -1 2
3.7. 試験結果および考察3-21
3.7.1. 分級工程3-21

3 . 7 . 2	. 水処理工程3 -2 7
3.7.3	. 脱水工程3 -3 4
3.7.4	. 土砂処分工程3 -3 5
3.7.5	. 有効利用試験結果3 -3 5
3.7.6	. 大碆東側海域水底土砂分析3 -4 4
3.7.7	. 堆積土砂の起源について3 -4 8
3.7.8	. 添付資料3 -5 4
3.8. ま	とめ3 -8 2
3.8.1	. 結論3 -8 2
3.8.2	. 課題点3 -8 2
4. 沈木回収	ス試験
4.1. 試	験目的4 -1
4.2. 沈	木回収試験フロー4 -1
4.3. 沈	木回収試験状況4 -2
4.4. 沈	木回収試験結果4 -4
4 . 4 . 1	. 沈木の堆積状況4 -4
4.4.2	. 泥土堆積状況4 -4
4.4.3	. 沈木の回収方法4 -4
4.4.4	. 試験方法4 -4
4.5. ま	とめ4 -4
4.5.1	. 結論4 -4
4.4.2	. 課題点4 -4

1. 序章

1.1. 適 用

本報告書は、平成 16 年度竜串地区自然再生推進計画調査業務のうち泥土処理 実証試験に関する内容及び結果等を記すものである。

1.2. 業務名

平成 16 年度竜串地区自然再生推進計画調査(泥土処理実証試験)業務

1.3. 実施期間

自 平成 17年 3月 1日 至 平成 17年 3月 31日

1.4. 業務目的

竜串湾に大量に堆積している泥土が荒天時に巻き上げられ、濁りを発生することにより、サンゴ群を主体とする生態系に悪影響を与えていると考えられており、その堆積した泥土を除去することによる環境改善策の実施が急がれる。

よって本実証試験にて、今後の自然再生事業に於いて湾内に堆積している泥 土除去を行なうことを想定し、堆積土砂の除去に必要となる浚渫及び浚渫排水 の水処理、発生土の処分、有効利用法等のデータ収集、整理、分析、検討を行 うことを目的とした。

なお、本実証試験では泥土が堆積して濁りが発生していると考えられる、高知県土佐清水市の竜串湾弁天島東側を、試験対象地点とし試験を実施すると共に本地点の泥土を除去し、環境改善に努めた。

また、弁天島東側と諸条件の異なる三崎川河口域付近における泥土除去、水処理の一連の方法検討も視野に入れ実証試験に臨んだ。その一環として、本実証試験では三崎川河口域に泥土とともに堆積している沈木回収試験を併せて実施した。

1.5. 対象地点

本業務は、泥土の堆積が著しい弁天島東側地点を試験対象地点とし、潜水士の目視観察にて浚渫位置を設定した。図151に対象地点図を示す。 また、次ページ写真151~154に対象地点の全景写真を示す。

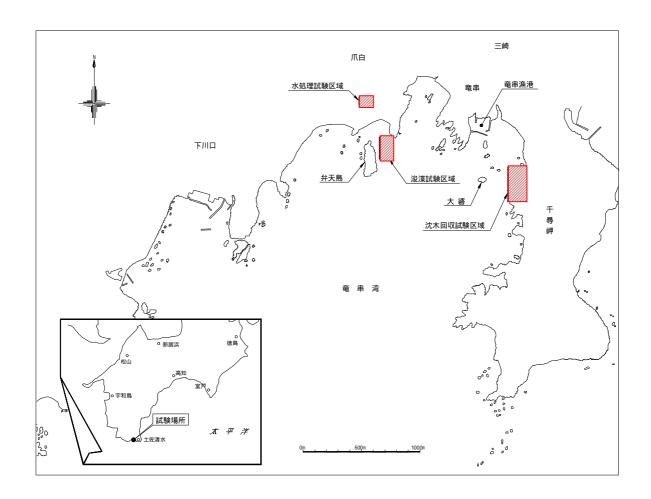


図 1 - 5 - 1 業務対象地点図

写真 1-5-1 浚渫試験海域

写真 1-5-2 浚渫試験海域

写真 1 5 3 水処理試験区域

写真 1 5 4 沈木回収試験海域

1.6. 業務フロー

本業務の業務フローを図161に示す。また本実証試験のうち浚渫試験、水処理試験についてのイメージフローを図162に、沈木回収試験のイメージフローを図163にそれぞれ示す。

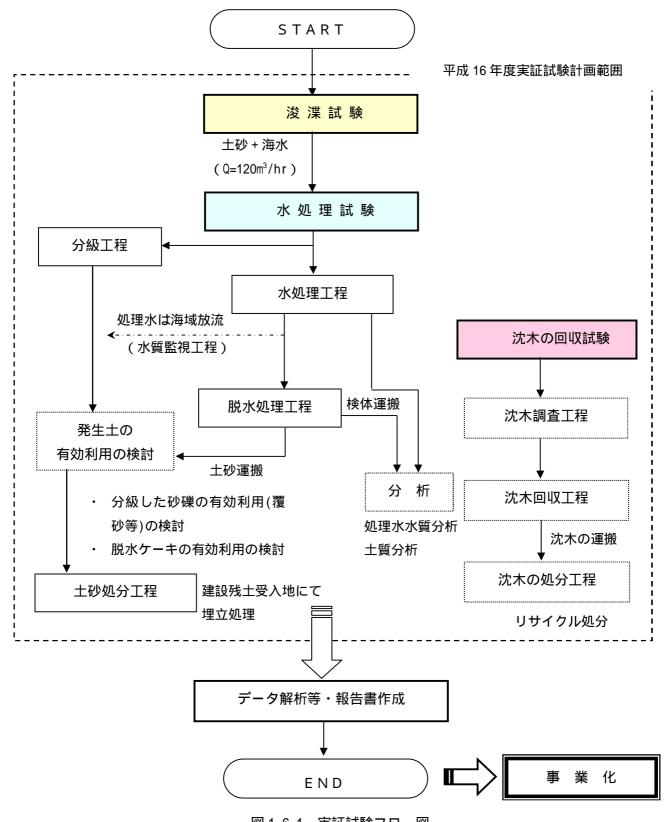


図 1-6-1 実証試験フロー図

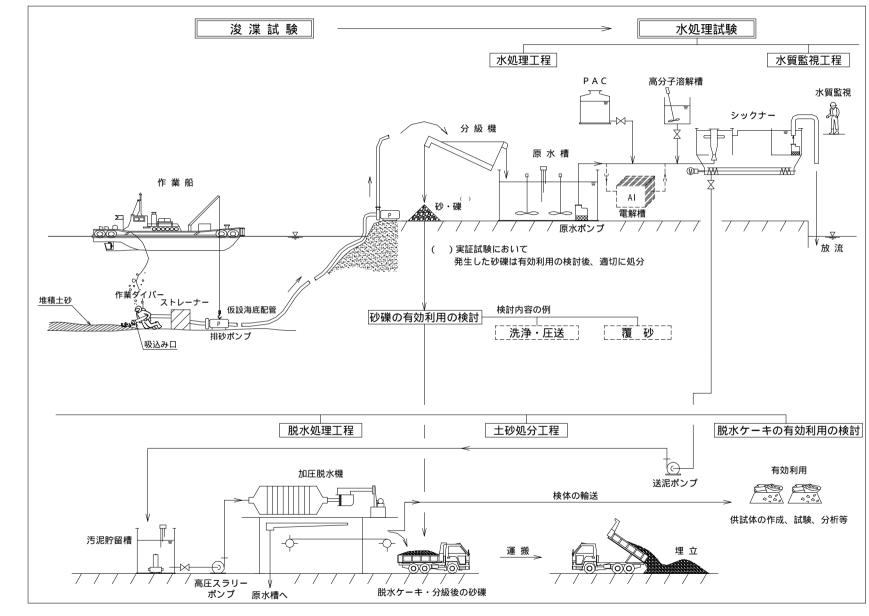


図 1 6 2 浚渫試験及び水処理試験イメージフロー図

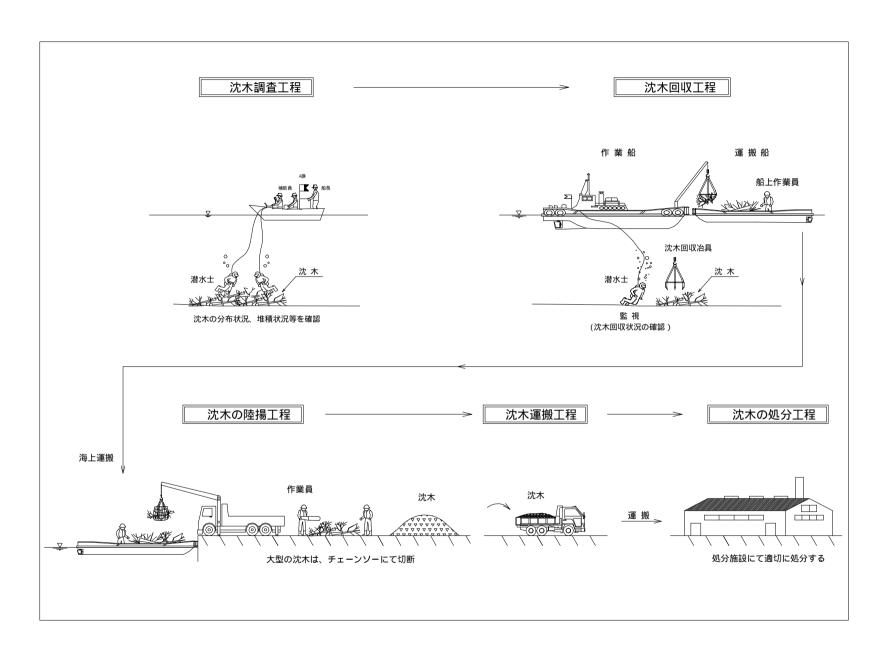


図163 沈木回収試験イメージフロー図

2. 浚渫試験

2.1. 試験目的

平成 15 年度竜串地区自然再生推進計画調査(泥土処理実証試験)業務(以下、 平成 15 年度実証試験)にて本対象海域のように岩、サンゴ等が確認される複雑な 海底地形及び堆積した泥土と既存の砂礫等が混在する浚渫対象物から泥土を選択 的に浚渫する必要性等より、「潜水士によるポンプ浚渫」の優位性が確認された。 しかし作業基地となる作業船舶の操船性、作業性及び海底状況に応じた吸込み法、 浚渫時の混在物の分離など、事業化に向けて検討すべき課題がある。

よって今回実施した浚渫試験にて現状の課題の検討及び事業化の際、適正な浚 渫計画を立案する為のデータ収集を目的とした。

また浚渫試験は、次の3つの工程より構成され、それぞれの工程にて収集されたデータについて取りまとめならびに評価を実施した。

海底状況調査工程(浚渫対象海域の海底状況を潜水士により目視調査) 浚渫工事工程(排砂ポンプを使用した潜水士による浚渫) 仮設工事工程(水処理ヤードまでの仮設配管布設・撤去等の仮設関連工事)

2.2. 試験フロー

浚渫試験の試験フローを図221に示す。

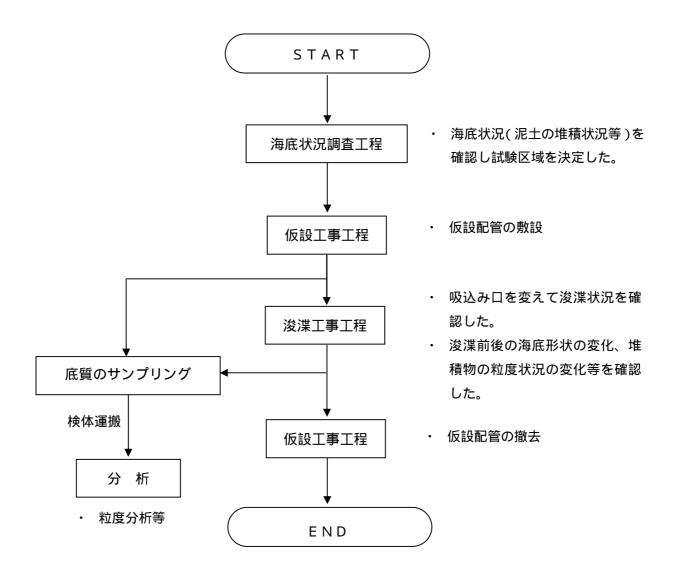


図2-2-1 浚渫試験フロー

2.3. 試験対象海域

図23-1に示す竜串湾の弁天島東側海域を浚渫試験対象海域とした。

本海域は平成 15 年度実証試験および平成 16 年度竜串地区自然再生推進計画調査(海底状況等調査)業務(以下、平成 16 年度海底状況等調査)の実施海域であり、調査の際泥土の著しい堆積が確認された箇所である。また後背地の爪白園地駐車場は水処理ヤードとして十分利用できるスペースが確保できる。従がって浚渫試験を実施するには好条件が整った地点である。

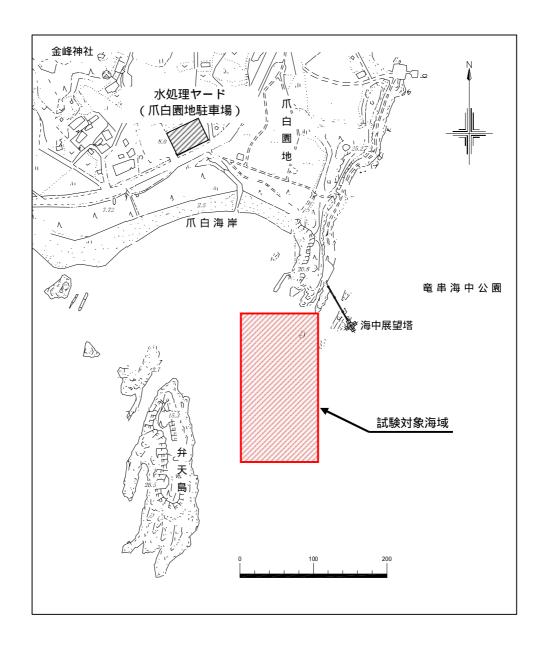


図2-3-1 浚渫試験対象海域

2.4. 海底状況調査工程

2.4.1. 泥土堆積状況の変化

平成 15 年度竜串地区自然再生推進計画調査(泥土処理実証試験)業務の実施時(平成 16 年 3 月)には、写真 2 4 -1 に示すように泥土のみが層厚 0.3m~0.5m 程度堆積している箇所が確認された。また平成 16 年 5 月に実施したソナーによるデモ調査の際には、層厚 1m 以下の泥土堆積が広がっていることが示唆された(図 2 4 -1 参照)。

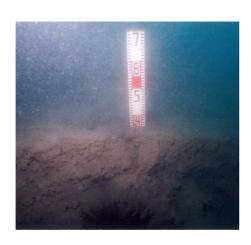


写真24-1 H15年度実証試験時の堆積 【平成15年度竜串地区自然再生推進計画調査 (泥土処理実証試験)業務報告書より】

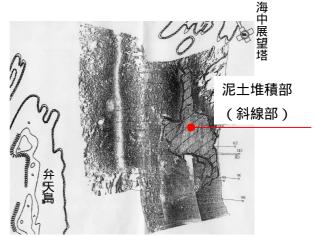


図 2 4 1 H16 年 5 月泥土堆積状況 【平成 16 年度竜串地区自然再生推進計画調査 (海底状況等調査)業務報告書より】

しかし、平成 16 年度海底状況等調査(平成 16 年 9 月)における調査結果はデモ調査の際とは異なり、泥土は原地盤と考えられる砂礫と混合した状態もしくはその上に薄く広がり堆積していた(写真 2 4 2 参照)。これは調査前に現地を襲った記録的な台風による波浪の影響と考えられる。平成 15 年度実証試験にて確認された含水比が高く液性限界に近い状態と考えられる泥土は波浪により流出し広がったと予想された。また流出前にそれら泥土の下に堆積していたと思われる塑性限界に近い状態の泥土(写真 2 4 3)は、厚さ 0.5m 程度で断層状に自立した状態で確認された。端から波浪等により削りとられ断層状になったと予想された。

写真 2 4 2 H16 年度海底状況等調査時の堆積 (砂礫の上に薄く広がる泥土) 【平成 16 年度竜串地区自然再生推進計画調査 (海底状況等調査)業務報告書より】

写真243 H16年度海底状況等調査時の堆積 (断層状に堆積) 【平成16年度竜串地区自然再生推進計画調査 (海底状況等調査)業務報告書より】

平成 16 年度海底状況等調査の調査結果より図 2 4 2 に示す底質分布図を作成した。 泥土は青色部に写真 2 3 3 の状態で堆積していると考えられ、青色網掛け部には写真 2 3 2 状に泥土が薄く堆積していると考えられた。

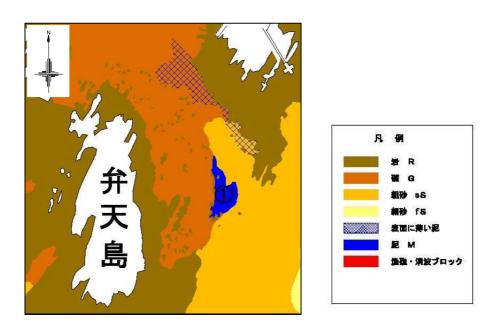


図242 弁天島周辺底質分布図(H16年9月) 【平成16年度竜串地区自然再生推進計画調査 (海底状況等調査)業務報告書より】

以上より泥土堆積は台風等の影響により変化すると考えられる。従がって今回の実 証試験では、先ず海底状況調査を実施し泥土の堆積状況を確認後、試験区域を決定し た。

2.4.2. 調査方法

海底状況調査は潜水士の目視および水中ビデオ撮影により実施した。

2.4.3. 調査地点の位置及び地形

調査地点は平成16年度海底状況等調査の結果をうけ図242に示した青色部及び青色網掛け部周辺とした(以下、青色部周辺をSt.A、青色網掛け部周辺をSt.Bとする)。 弁展島東側海域は弁天島、爪白海岸及び海中展望塔のある岬に囲まれた海域で陸側から沖側へ向かって延びる谷地形は特徴的である。図243に示す海底地形図は平成16年度海底状況等調査にて作成されたものである。

また泥土堆積が確認された青色部は、谷地形の最も深い場所にあたる。また青色網掛け部は岬側から延びた岩礁部の根に位置している。図244は図243と同じ調査にて作成された鯨瞰図の一部である。

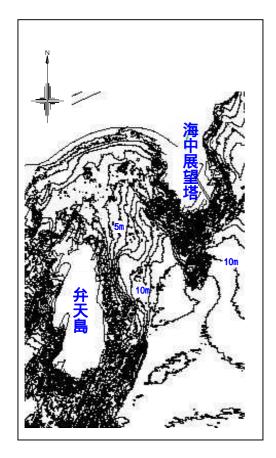


図243 弁天島周辺海底地形図(H16年9月) 【平成16年度竜串地区自然再生推進計画調査 (海底状況等調査)業務報告書より】

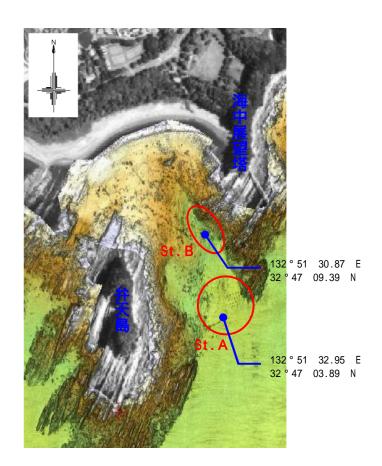


図244 弁天島周辺鯨瞰図(H16年9月) 【平成16年度竜串地区自然再生推進計画調査 (海底状況等調査)業務報告書より】

2.4.4. 調査結果

(1) St.A

St. A周辺の海底状況を写真244~写真24-15に示す。

St. A は水深約 12mで、すり鉢状になった地形である。弁天島東側海域では最も多くの泥土堆積が確認されている。St. A 周辺の泥土堆積は写真 2 4 4、写真 2 4 5に示したように泥土が一様に堆積した箇所と、写真 2 4 6に示したよう砂礫と混合した場合が確認された。

泥土が一様に堆積している場合、その堆積厚さは約 5cm~20cm 程度である。泥土の下には、砂礫と泥土が混合した層が確認された。また砂礫と混合した泥土堆積は表面に 3cm 以下程度の薄い泥土層があり、その下には砂礫と泥土が混合した層がある。砂礫と泥土の混合層は厚さ約 5cm~10cm 程度であった。

St. A周辺には泥土の堆積の他に、沈木、流藻等が確認された。また岩礁部分は地形的に起伏が激しく高低差がある。従がって岩礁の根の部分(岩礁の谷間)は写真249に示すように泥土堆積やそれに伴う濁りが確認された。しかし岩礁上部では写真24-15にように濁りが少なく、サンゴ等の生物が確認された。

St.Aにおける泥土の堆積は確認されたが、平成16年度9月に実施した調査時に撮影された断層状になった泥土の崩壊箇所(写真243)は確認されなかった。

写真 2 4 4 St.A 海底状況

写真 2 4 5 St.A 海底状況

写真 2 4 6 St.A 海底状況

写真 2 4 7 St.A 海底状況

写真 2 4 8 St.A 海底状況

写真 2 4 9 St.A 海底状況

写真 2 4 -10 St. A 海底状況

写真 2 4 -11 St.A 海底状況

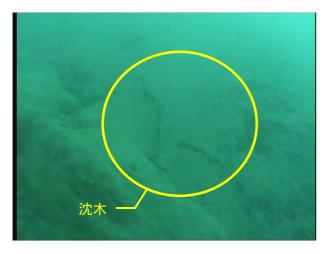


写真 2 4 -12 St. A 海底状況

写真 2 4 -13 St.A 海底状況

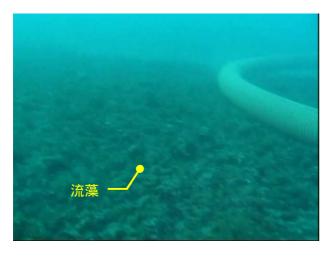


写真 2 4 - 14 St. A 海底状況

写真 2 4 -15 St. A 海底状況

(2) St.B

St. B周辺の海底状況を写真24-16~写真24-23に示す。

St. B は水深約 9mで、海中展望塔側の岩礁の縁に当たり、図 2 4 3 の海底地形図から分かる様に谷状になった地形である。平成 15 年度実証試験における浚渫地点はSt. B 周辺であり写真 2 4 1 に示したような泥土堆積が確認された。しかし平成 16 年度の調査では一様な泥土の堆積は確認されず砂礫と泥土が混合した堆積が確認された。従がって図 2 4 2 の底質分布図では「表面に薄い泥」と分類した。

St. Bにおける泥土堆積は写真 2 4 -16 ~ 写真 2 4 -19 に示すように、一様に泥土が堆積した状態が確認された。その堆積厚さは $10 \, \mathrm{cm} \sim 20 \, \mathrm{cm}$ 程度である。また泥土の堆積は岩礁の根の部分に多く見られ、根の縁に沿って幅 $3 \, \mathrm{m} \sim 5 \, \mathrm{m}$ で沖に向かって延びている。

泥土の下にはSt.A同様、砂礫と泥土が混合した層が存在し、その層(5cm 程度)の下にはさらに粘土状に堆積した泥土が堆積している場所もあった。

また一様に泥土が堆積した周囲には写真 2 4 20、写真 2 4 21 に示したように、薄く泥土が広がった箇所が確認された。泥土の堆積厚さはほぼ 1cm 以下であるが写真 2 4 22 に示すように、流を与えると濁りが発生した。

写真 2 4 -23 は泥土の堆積箇所に発見したシコロサンゴである。シコロサンゴの泥土に埋まっている部分は白くなって死んでいるが、先端の一部は茶色でまだ生きている。

写真 2 4 -16 St. B 海底状況

写真 2 4 -17 St. B 海底状況

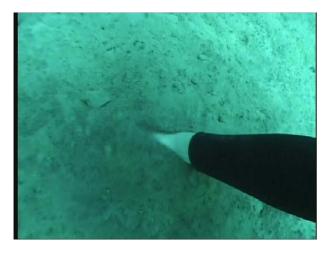


写真 2-4-18 St.B 海底状況

写真 2 4 -19 St. B 海底状況

写真 2 4 -20 St. B 海底状況

写真 2 4 -21 St. B 海底状況

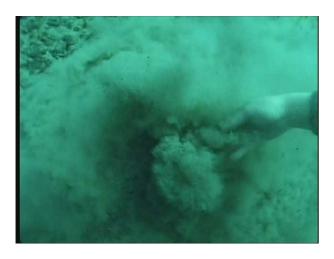


写真 2 4 -22 St.B 海底状況

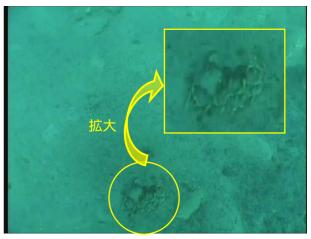


写真 2 4 -23 St. B 海底状況

2.4.5. 試験区域

(1) 区域の決定

浚渫試験の際、浚渫効率等のデータを収集する為に一定面積の区画を造り 浚渫試験を実施した。この区画を試験区域とする。一つの試験区域は図245 に示すように25m²(5m×5m)で正方形としロープにて区画をした。

海底状況調査の結果より、泥土堆積が確認され 25㎡ の試験区域を十分に区画することが可能である St. A周辺に試験区域を設けた(写真 2 4 -24、写真 2 4 -25 参照)。なお試験区域は 2 つ設置し、従来型及びジェット併用 型の 2 方式について浚渫を行った。

また試験区域におけるデータ収集後は St.Aの試験区域外及び St.B周辺にて浚渫を行い、浚渫排水を水処理ヤードへ送った。

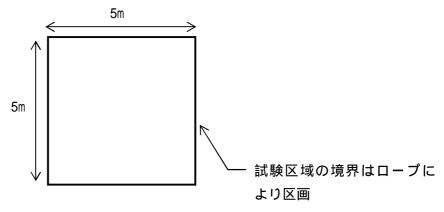


図 2 4 5 試験区域 (1区域:25m²)

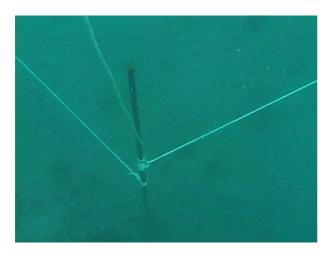


写真 2 4 -24 試験区域区画状況

写真 2 4 -25 試験区域区画状況

(2) 試験区域の泥土堆積状況

試験区域において堆積土を柱状採泥し、試料の粒度組成および自然含水比を分析した。

採泥地点

試料は2つの試験区域から各1点採泥した(図246参照)。それぞれの採泥地点をP1、P2とした。

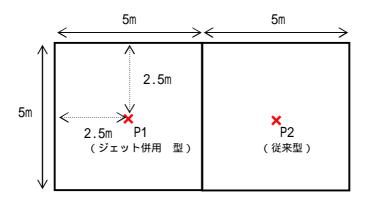


図246 採泥地点

採泥方法

採泥方法は潜水士により、 75mm、長さ 1m の鉄パイプを採泥地点に貫入させ、堆積土を不撹乱にて採取した(写真 2 4 7)。

採泥後、陸上にて試料を地表面から上層、中層、下層の3層に分割した。

分析結果

P1、P2 地点における各層の試料分析結果を表 2 4 1、粒度加積曲線を図 2 4 8、図 2 4 9 に其々示す。また各試料の写真を写真 2 4 26~写真 2 4 35 に示す。

P1 において約 25cm の柱状試料を採泥した。試料の分割は表 2 4 1 に示す 地盤レベルにて行った。分割の目安は目視にて性状の異なる部分である。P2 における柱状試料は約22cmであり、分割はP1と同様に実施した。

P1、P2 共に目視において上層はシルト、粘土、中層では上層のシルト、粘 土層に砂礫が混入した状態であり、下層は中層より砂礫の割合が増した状況 であった。粒度分析の結果より各試料の分類を行うと表241中の地盤材料 の分類名に記載したように分類できる。P1、P2 共に上層、中層は細粒土であ リ下層は細粒分混じり礫になる。図248、図249から下層においてP1で 40%、P2 で 30%のシルト、粘土が含まれることが分かる。写真 2 4 30、写 真24-35は下層試料の細粒分を洗い流した後の礫分である。

表 2 4 2 は P1、P2 と同海域にて採泥した試料の分析データである。 粒度組 成より P1、P2 の上層に近い状態である。このデータから P1、P2 の液性限界 も 75.00%程度と考えると、P1、P2 の含水比 81.9%、85.0%より P1、P2 の 表層の泥土堆積は液状であり、やわらかい状態である(図247参照)。

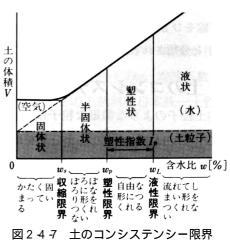

拉油		地盤レベル	地盤材料の 分類名	含水比	粒度組成					
採 泥地 点	検体名	地盤レベル			礫分	粗砂分	中砂分	細砂分	シルト分	粘土分
~		cm	77 75 🗀	%	%	%	%	%	%	%
	上層	GL0~GL-15	粘性土	85.0	0.0	0.2	0.4	2.5	70.7	26.2
P1	中層	GL-15 ~ GL-20	砂混じり礫質粘性土	49.9	30.3	1.7	2.5	3.5	40.1	21.9
	下層	GL-20 ~ GL-25	粘性土質砂質礫	32.8	40.9	6.1	6.9	4.9	27.4	13.8
	上層	GL0 ~ GL-10	砂混じり粘性土	81.9	0.6	0.4	0.8	5.1	65.3	27.8
P2	中層	GL-10 ~ GL-17	砂混じり礫質粘性土	58.2	31.1	1.0	1.6	5.0	48.9	12.4
	下層	GL-17 ~ GL-22	砂混じり粘性土質礫	26.2	62.7	1.3	1.7	3.6	22.5	8.2

表 2 4 1 分析結果

表242 弁天島東における底質分析結果

【平成 15 年度竜串地区自然再生推進計画調査 (海域調査)業務報告書より】

項目		NO.5海底粘性土	備考
比重		2.67	H15年度竜串地区自然再生推進計画調査 (海域調査)業務報告書P110より 採泥点:弁天島東
	砂	1.35%	採ル点: 开大馬東 (132°51'44.3"E 32°46'55.5"N)
粒度	シルト	50.15%	
	粘土	48.50%	
液性限界		75.00%	#
塑性限界		29.30%	天
塑性指数		45.70%	

【土質力学 実教出版 P38】

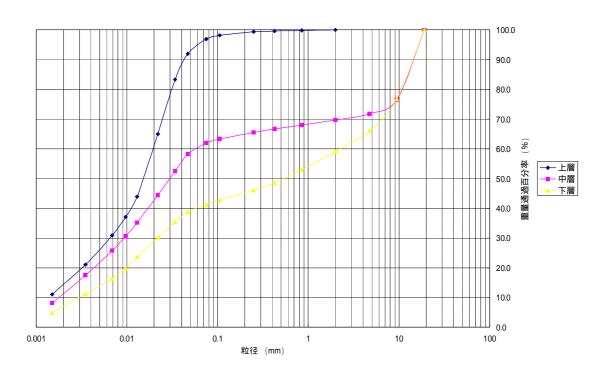


図248 P1 における粒径加積曲線

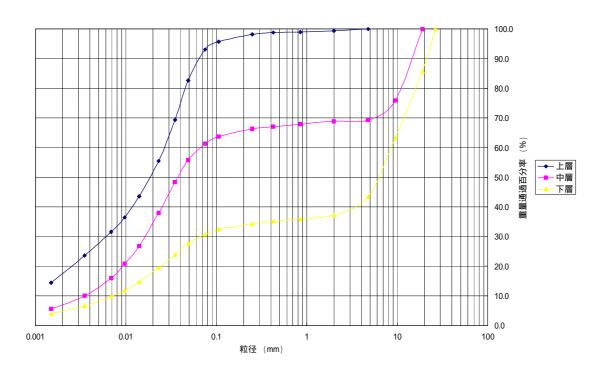


図249 P2における粒径加積曲線

写真 2 4 -26 P1 試料

写真 2 4 -27 P1 試料 (上層)

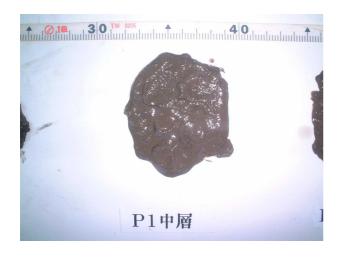


写真 2-4-28 P1 試料 (中層)

写真 2 4 -29 P1 試料 (下層)

写真 2 4 30 P1 下層試料に含まれる礫

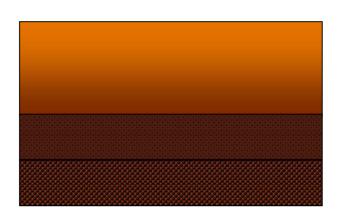
写真 2 4 -31 P2 試料

写真 2 4 -32 P2 試料 (上層)

写真 2 4 -33 P2 試料 (中層)



写真 2 4 34 P2 試料 (下層)


写真 2 4 35 P2 下層試料に含まれる礫

試験区域の堆積状況

分析の結果をまとめると試験区域の堆積状況の概要は以下の通りである。 また堆積状況を図24-10に示す。

分析試料の上層を泥土層とし、中層、下層を混合層と表現する。中層は混合層上部とし、下層は混合層下部とする。

- ・ 堆積厚さ:泥土層 5cm~15cm、混合層(泥土+砂礫)10cm
- ・ 泥土層性状:90%(重量百分率)が細粒分、液状で軟弱
- ・ 混合層性状:堆積深度が深くなるに従い礫の割合が増加、砂の割合は増さない為、もともと礫底であったと推測される。 混合層上部において 70%程度(重量百分率) 下部において 30%程度(重量百分率) の細粒分を含む。

泥土層:5cm~15cm

混合層上部:5cm

混合層下部:5cm

図24-10 試験区域の堆積状況概略図

2.4.6. 考察

現在までの調査結果より、弁天島東側における泥土の堆積はSt.AおよびSt.B付近に堆積していることが分かる。また堆積状況の変化から台風など荒天時の波浪の影響により泥土は移動、再堆積を繰り返していると考えられる。写真2423のシコロサンゴが部分的に生きていること、堆積している泥土が締まっていないことなどから、この地点の泥土堆積は古くから堆積していたものではないと予想され、懸濁した泥土が再堆積したものだと考えられる。

P1、P2地点の土質分析結果(表24-1、表24-2参照)より堆積土の 上層は液性限界値以上の値を示し、少々の流にて濁りが発生する状態である。

2.5. 浚渫工事工程

2.5.1. 浚渫方法

今回採用した潜水士による排砂ポンプを使用した浚渫工法は、以下の内容である。

- 排砂ポンプ(横型水中サンドポンプ)を海底に設置、潜水士により直接 目視を行いながらサクションホースにて堆積土砂を吸引した。吸込み流 量は水処理施設の能力より 120m³/hr とした。
- サクションヘッドにはラッパ状になった従来型、攪拌機の水流により混在物を分離し泥土を吸引するジェット併用 型、また水中ポンプの水流により混在物を分離し泥土を吸引するジェット併用 型、狭い箇所に堆積した泥土を吸引する為の狭窄型の4種類を用いた。(表25.1参照)
- 其々のサクションヘッドにて浚渫状況を確認した後、浚渫効率が良いと 考えられる従来型とジェット併用 型を用い試験区域(5m×5m)内にて 浚渫を実施した。試験区域における浚渫終了後、水処理試験実施の為、 周辺の試験区域周辺の泥土除去を実施した。
- 浚渫作業用の作業船舶は小型のクレーン付潜水士船を用いた。
- 吸引された土砂は海底および陸上の仮設配管により流体移送され陸上の 水処理ヤードまで移送・排出した。
- 今回は移送距離が比較的長く、移送能力を補う為のブースターポンプを 仮設配管の途中に設置した。但し排水量を 120m³/hr 以下に調整のする為 に、途中でブースターポンプを取り除いた。
- ポンプの起動及び停止等の操作は、作業船上において行った。
- 作業潜水士と船上の作業管理者は有線の水中電話により密に連絡を取りながら、排砂ポンプの起動・停止ならびに起重機類の運転状況の確認、または浚渫作業状況の確認等を行った。海上の作業船舶と陸上の水処理ヤードとは無線により連絡を取り作業を実施した。

浚渫作業のイメージを図 2 5 1 に示す。また代表的な使用機器のリストを表 2 5 2 に示す。

吸込み方法 従来法 ジェット併田法 变形法 名 称 従来型 ジェット併用 型 ジェット併用 型 狭窄型 従来の吸込み口(ラッパ形状) ・攪拌機により水流を ・水中ポンプにより水流を発生さ ・吸込み口が閉塞することにより ・含泥率が高い ・吸い口にストレーナーを取付け 石等の吸込みを防ぐ場合がある。 発生させる。 ・砂礫と混じり薄く堆積している場 せる。 ・砂礫の間隙に堆積した泥土を水 小さい場所の浚渫が可能になる。 特徴 合に用いる。 ・濁り防止のカバー付き 流により巻き上げ吸込む。 ・泥のみが圧密により固く締まって 堆積している場合、水流により泥 土を流動化させる。 0 水流発生装置 浚渫要領

表25.1 サクションヘッド概略

作業船(小型クレーン付潜水士船)

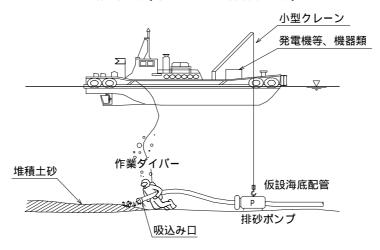


図 2 5 1 浚渫イメージ

表 2 5 -2 機器リスト

項 目	仕 様	数量	単位
排砂ポンプ (1台ブースターポンプに使用)	150A、22kW、揚程 10m 揚水量 2.5 m ³ /min	2	台
キャプタイヤケーブル	22 100m	1	式
フレキシブルホース (仮設配管)	150A、20m/本	30	本
発電機	60KVA	2	台
従来型ヘッド	150A、ラッパ型	1	ケ
ジェット 型ヘッド	攪拌機×2基(0.25kW)	1	ケ
ジェット 型ヘッド	水中ポンプ(50A、1.5kW、1台)	1	ケ
狭窄型	150A×50A(PVC製)	1	ケ

2.5.2. 潜水方法

今回採用した潜水方法は平成 15 年度実証試験と同様に一般的に潜水工事に用いられるフーカー式潜水方式である。

フーカー潜水では潜水者の装備がスクーバ式潜水とほぼ同じであるが、大きく異なる点は呼吸用の高圧空気タンクを携行しないことである。送気は船上から送気ホース(フーカーホース)を介して行われる。水中ではスクーバ式潜水とほぼ同じように機動性のある行動がとれる。

2.5.3. サクションヘッド形状

浚渫試験にて浚渫を実施したサクションヘッドは表25.1に示した4種類である。其々の形状及び特徴を以下に示す。

(1) 従来型

形 状:ラッパ状(図252参照)

材 質:鋼製

特 徴:吸込み口をラッパ状にすることにより吸込み時のエネルギーロスを 低減している。

構造が単純で取回しが良い。

平均吸込み流速: 取水量 Q=120m³/hr、吸込み口面積 S=314.2cm²より 平均吸込み流速 v = Q/S = 1.06 1 cm/sec

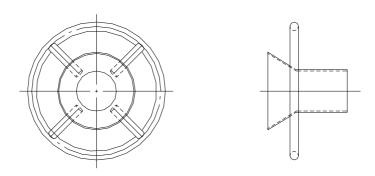


図252 従来型形状

(2) ジェット併用 型

形 状:箱型(図253参照)

材 質:鋼製+透明塩化ビニル(監視窓)

重量:約280kg

付属品:攪拌機×2台(図254参照)

特 徴:攪拌機により発生させた水流により海底面上に薄く堆積した泥土、 砂礫と混合した泥土を攪拌、流動化させ浚渫する。

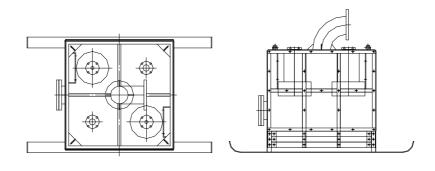


図253 ジェット併用 型形状

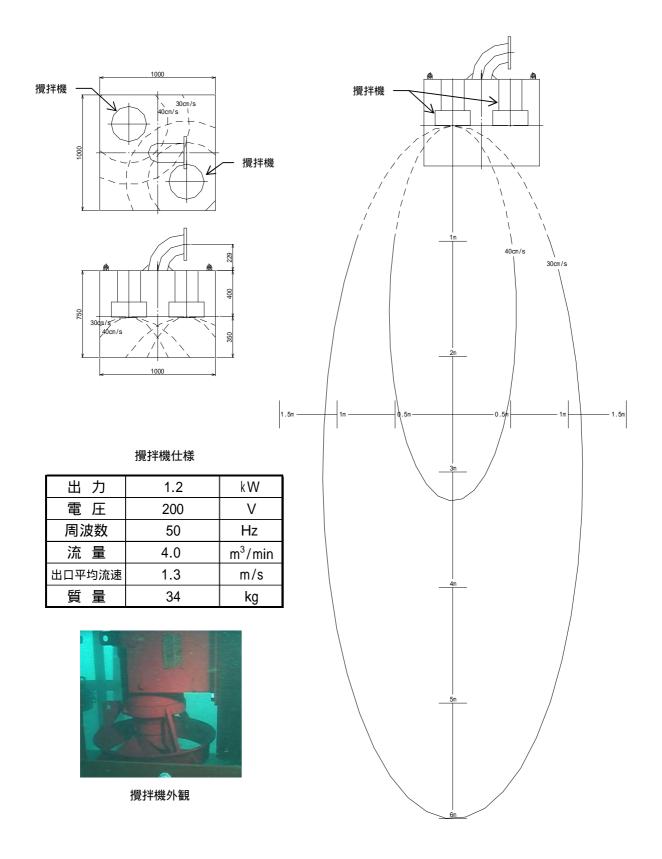


図254 攪拌機仕様 (ジェット併用 型)図中データはカタログ値

(3) ジェット併用 型

形 状:ラッパ状、吸い口の中央に水流ノズル(図255参照)

材 質:鋼製

付属品:水流発生用水中ポンプ×1台(表253参照)

表253 水中ポンプ仕様

吐 出	50A		
出力	1.5kW		
電圧	200V		
流量	0.4m³/min		
質 量	24.5kg		

特 徴:吸込み口中央から噴出させた水流により海底面上に薄く堆積した泥土または砂礫と混合した泥土を攪拌、流動化させ浚渫する。

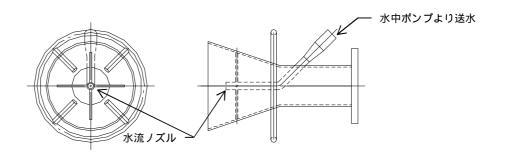


図255 ジェット併用 型形状

(4) 狭窄型

形 状:150A×50Aのレジューサー形状(図256参照)

材 質:PVC

特 徴:吸い口を50A(外径60mm)にすることにより狭い部分に堆積した泥

土を浚渫する。

図256 狭窄型形状

2.5.4. 試験内容

(1) 浚渫場所

浚渫場所は 2.4.5 にて決定した試験区域及び海底状況調査工程にて泥土堆 積が確認された St A、St B周辺(図 2 4 4 参照)を選定した。

(2) 収集データ

収集した浚渫データは表254の通りである。

表254 収集データ項目

収集データ	内 容	方 法		
浚渫状況の確認	各サクションヘッドによる浚渫状況の確認	潜水士による目視観察		
濁りの監視	浚渫作業にて発生する濁りの監視	濁度計により 水深1m毎の濁度計測		
浚渫時間	試験区域内における浚渫時間の測定	浚渫時間の記録		
浚渫排水の懸濁物量	試験区域内における浚渫排水のSS	浚渫排水を採水し そのSSを分析		
浚渫前後の堆積土の状況	浚渫前後の堆積土の粒度組成により 浚渫状況を評価	浚渫前後の表層土を採取し 粒度分析		

2.5.5. 試験状況

(1) 浚渫状況

浚渫工事工程の状況を写真25-1~写真25-25に示す。

写真 2 5 -1 作業船外観

写真252 排砂ポンプ投入状況

写真253 船上状況

写真254 濁り監視状況

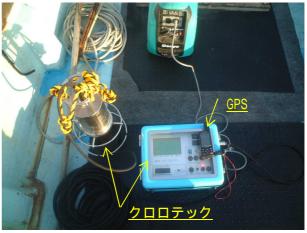


写真255 濁り監視用機器類

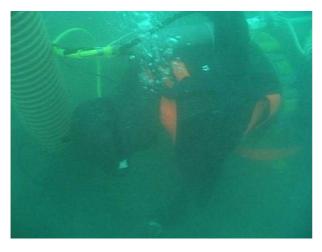


写真256 浚渫状況(従来型)

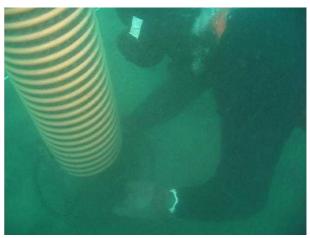


写真257 浚渫状況(従来型)

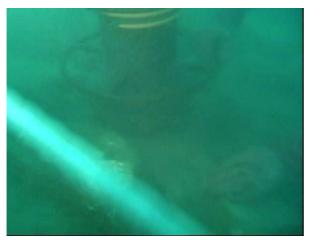


写真258 浚渫状況(従来型)

写真259 浚渫状況(従来型)

写真25-10 浚渫状況(従来型)

写真23-11 浚渫状況(従来型)

写真25-12 ジェット併用 型外観

写真 2 5 43 ジェット併用 型外観(監視窓)

写真 2 -5 -14 攪拌機

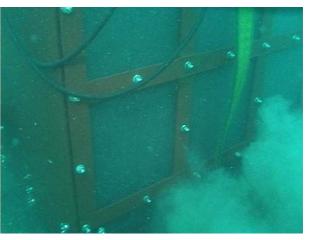


写真25-15 浚渫状況(ジェット併用 型)

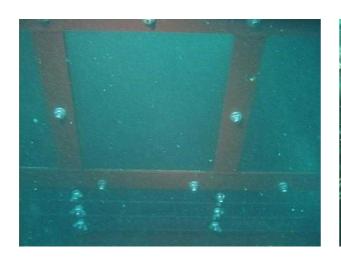


写真 2 5 -16 浚渫状況 (ジェット併用型) 写真 2 5 -17 浚渫後 (ジェット併用型)

写真 2 5 -18 ジェット併用 型外観

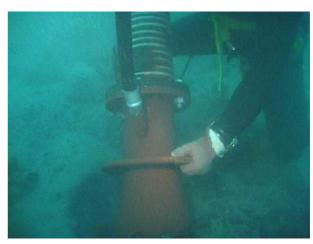


写真25-19 浚渫状況(ジェット併用 型)



写真25-20 浚渫状況(ジェット併用 型)

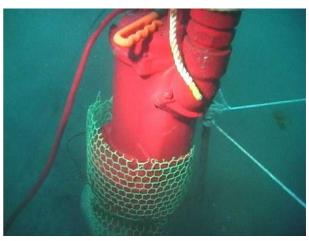


写真 2 5 -21 水流用水中ポンプ外観

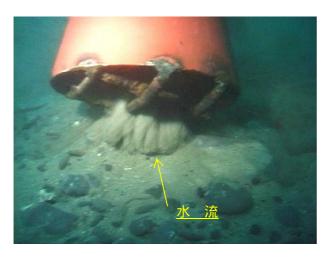


写真 2 5 -22 浚渫状況 (ジェット併用 型) 写真 2 5 -23 浚渫状況 (ジェット併用 型)

写真 2 5 -24 狭窄型外観

写真25-25 狭窄型吸込み口

(2) 使用機器

浚渫工程にて使用した機器類を写真23-17~写真23-22に示す。

写真 2 5 -26 中圧コンプレッサー (フーカー用)

写真25-27 フーカーホース

写真 2 5 28 発電機(船上) (60KVA)

写真 2 5 -29 発電機 ブースターポンプ用) (60KVA)

2.5.6. 試験結果

(1) 浚渫状況

本実証試験において表 2 5 1 に示した 4 つのサクションヘッドにより浚渫を行い、その浚渫状況を潜水士の目視観察等により確認した。各サクションヘッドにおける浚渫状況を以下に示す。

従来型

従来型による浚渫は、潜水士の目視により丁寧に浚渫物を確認しながら実施した。また潜水士が従来型による作業に慣れている為、作業性がよい。

平成 15 年度に実施した「平成 15 年度竜串地区自然再生推進計画調査(泥土処理実証試験)業務」の報告書において報告したように、本海域のような場所にて浚渫する際は、堆積した泥土の他に礫やサンゴの死骸、沈木等大型の混入物が、排砂ポンプに流入しポンプが停止する恐れがある。また今回は水処理ヤードの排水受入の配管が 80A (内径約 80mm)であることから、礫などの混入物が詰まる危険性も考えられた。従がって浚渫の際、潜水士の目視により丁寧に浚渫物を確認すると共に、吸い込み口には約 50mm ピッチに鉄筋を取付け、大型の混入物の流入防止策を施した。このことにより大型の混入物による浚渫作業の不具合は無かった。しかし、今回の実証試験では平成 15年度の実証試験の際に確認されなかった、漁具、袋などのビニールゴミ、流藻(海藻)の堆積が認められ、浚渫の際これらを吸引することにより陸上部水処理ヤードに不具合が発生した(写真 2 5 30、写真 2 5 31 参照)。

また、堆積した泥土は砂礫と泥土の混合層の上に薄く広がっている状況 図 2 4 -10 参照)の為、図 2 5 -7 に示すようにサクションヘッド部を堆積土に直接挿入するのではなく、堆積した泥土を潜水土の手によって掻き集めながら吸引した。

図257 サクションヘッド部のイメージ

写真2530 吸引されたビニールゴミ、海藻 (陸上部水処理ヤードにて回収)

写真2531 海底に堆積した流藻

ジェット併用 型

ジェット併用 型の作業フローは図258に示す通りである。本サクションヘッドの重量は約280kgである。水中クレーンの浮力により重量を調整し潜水士(人力)にて移動させる。一回の浚渫作業に掛かる時間は、攪拌・吸込みに3分、移動に1分、従がって合計4分である。

ジェット併用 型のサクションヘッドは、海底面に堆積した泥土を直接吸引するのではなく、攪拌機の水流により堆積土を混合し流動化させて吸引するものである。攪拌混合する際、微細で重量の小さい泥土の方が重量の大きな砂礫よりも優先的に流動化する。従がって泥土の堆積が「薄層な場合」や「砂礫等と混合している場合」には、このサクションヘッドを使用することで泥土分を選択的に浚渫することが期待できる。

実際、攪拌機の水流によって舞い上がった砂礫、泥土についての混合攪拌 状況は良好であった。浚渫後、礫間の泥土は浚渫された(写真2532、写真2533、写真2534参照)。写真2535は浚渫後の海底を潜水土により掻き 混ぜた状態である。泥土が除去されたことにより濁りの発生は無い。

しかし攪拌機の取付け位置、海底の石等の障害物よって均一に水流が行渡らず、攪拌不足による泥土の吸い残しが確認されたケースもある(写真2536参照)。また砂礫層の下に堆積し、粘土状に張り付いて吸いきれていない泥土も確認された(写真2537参照)。

ジェット併用 型は、攪拌機の水流による濁りが周囲に拡散することを防ぐ為にボックス形状になっている。またボックスの下部は地盤と 5cm の隙間があり、そこから新鮮な海水が取り込まれる構造になっている。しかし攪拌機の取り付け位置による流速の偏りにより、浚渫中、下部隙間から水流がボックスの外に漏れ、濁りが周囲に拡散した。濁りは周辺 5m 程度、水底面に沿って広がった(写真 2.5.20 年度)5.5.20 年限)

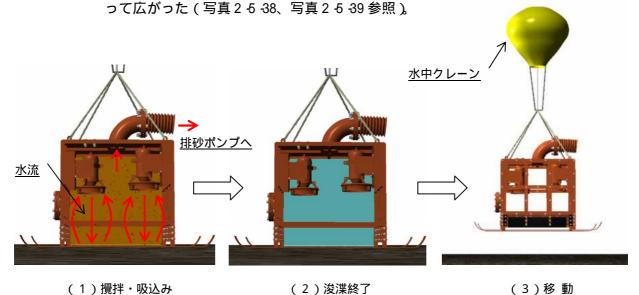


図258 ジェット併用 型浚渫作業フロー

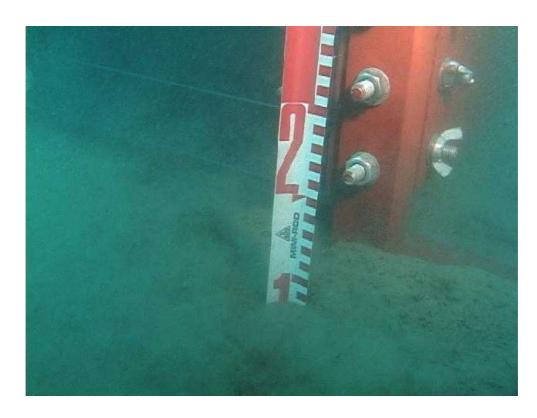


写真 2 5 32 浚渫前の海底状況

写真25-33 浚渫後の改定状況

写真 2 5 -34 海底状況

写真25-35 浚渫後の海底状況

写真2536 海底状況(泥土の吸い残し)

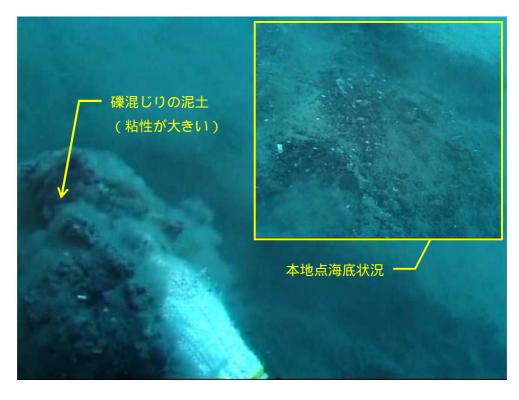


写真25-37 浚渫後の海底状況

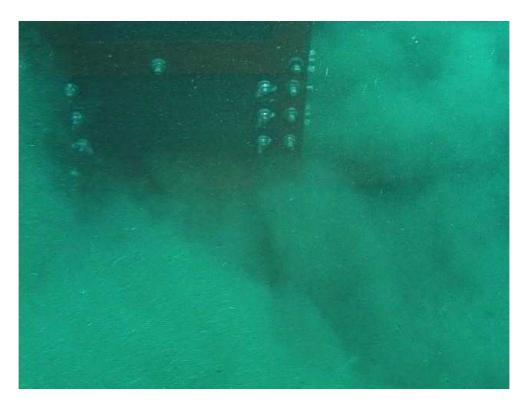


写真25-38 浚渫中の濁りの発生

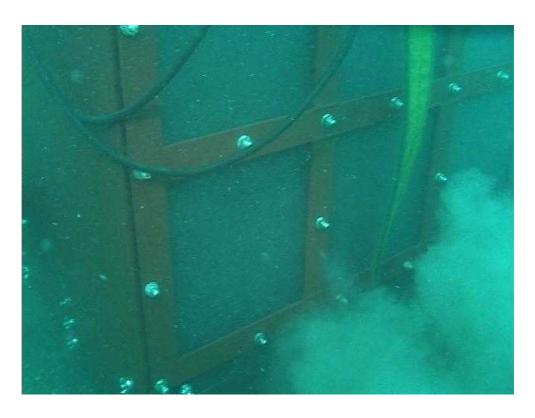


写真25-39 浚渫中の濁りの発生

ジェット併用 型

ジェット併用 型は、従来型、ジェット併用 型の要素を併せたものである。従来型の形状をしたサクションヘッドの先端にノズルを取付け、水中ポンプによりノズルから水流を発生させる。発生させた水流により堆積した泥土を流動化させ吸引する。

写真 2 5 40 はジェット併用 型の水流の発生状況を示した写真である。堆積した泥土は水流により流動化し、吸引されていることが分かる。しかし水流が水底面に当たる面積が小さく、泥土が吸引されている部分はサクションヘッドの一部分であり、殆どが周囲から海水を連行している。

よってジェット併用 型による浚渫は水流のみでは作業効率が悪い為、従来型と同様潜水士の手により周囲の泥土を掻き集めながら吸引した(写真 2.5.41)。

写真2540 ジェット併用 型の水流

写真2541 ジェット併用 型浚渫状況

狭窄型

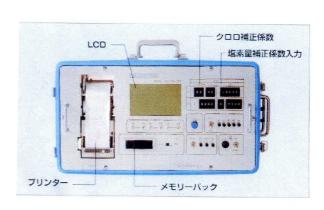
狭窄型は岩礁の間等の狭い場所に堆積した泥土の除去を目的に吸込み部分を 50A(約50 mm)に搾った形状のサクションヘッドである(図256参照)。 吸込み口の小さくすることで吸込む流速が増し、泥土の吸込み状況は良好である。しかし礫、ビニールゴミ等がつまり安く吸込み不能になる。 また吸込み口の面積が小さい為、作業効率が悪くなる。

(2) 濁りの監視

監視の目的

潜水士によるポンプ浚渫は、グラブ浚渫船、ポンプ浚渫船など大型の重機類による浚渫と比べ、取り扱う土砂量が少ないこと、また潜水士によって丁寧に作業を行うことから、作業中に発生する濁りは極めて少ない。

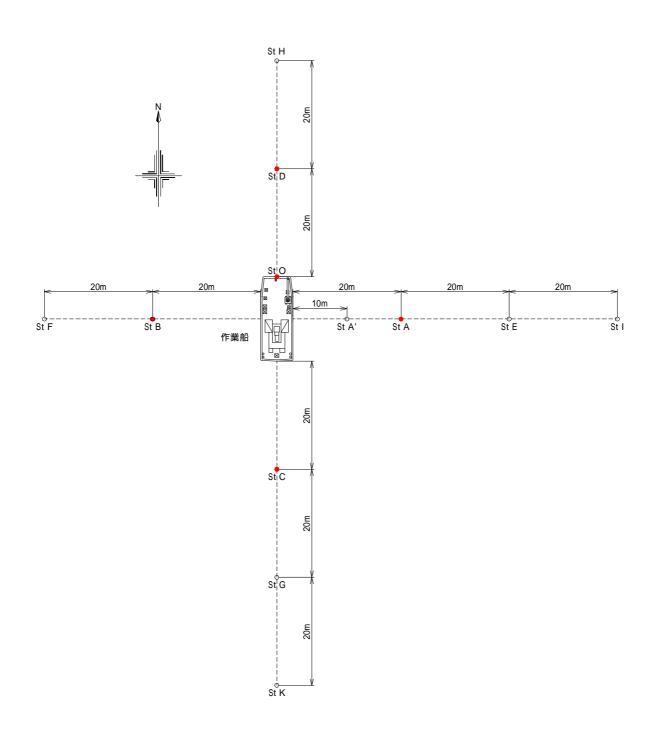
本試験において、潜水士によるポンプ浚渫によってどの程度の濁りが発生 しているかを確認すると共に、事業化の際の泥土除去を仮定し、除去中の「濁 り」に対するモニタリング方法、対策を検討する為に濁りの監視を実施した。


監視方法

濁りの監視は濁度計を用い、各水深の濁度データを記録した。使用した濁度計はクロロテック(ACL 1183 PDK,アレック電子製)である。クロロテック外形および仕様は写真 2 5 42 の通り。

監視点は St.O、St.A、St.B、St.C、St.D の 5 点であり、図 2 5 9 に示すとおりである。浚渫作業地点(濁りの発生源)を作業船下の海中として、St.O とした。また St.O を中心として東西南北に其々10m離れた 4 点を St.A、St.B、St.C、St.D とした。

濁りの監視時期は1回の監視につき作業前、作業中の2回である。



項目	タイプ	測定レンジ	精 度
濁度センサ	赤外後方散乱方式	0 ~ 200ppm	± 2%
深度センサ	半導体圧力センサ	0 ~ 50m	± 0.05m

表中データはカタログ値

写真 2 5 42 クロロテック (ACL 1183 PDK, アレック電子製)

🛑 :監視点

(St.O, St.A, St.B, St.C, St.D)

〇:参考点

(St.A',St.E, St.F, St.G,St.H, St.I, St.K)

図259 濁り監視点

監視結果

濁度の監視結果を表 2 5 6 ~ 表 2 5 -10 に示す。また各データを表したグラフを図 2 5 -10 ~ 図 2 5 -14 に示す。

表層の濁度は、1~3 程度であり、水深 0.5m~5.0m まではほぼ一定の値を示している。水深 5.0m 以深は、傾向的に水底に向かって濁度が高くなる。水底の濁度は高いもので 10 程度である。特に水深が 13m 前後にて濁度が高い。 浚渫前と浚渫中の濁度の値を比較すると、顕著な変動がない。浚渫前後の

浚渫前と浚渫中の濁度の値を比較すると、顕著な変動がない。浚渫前後の 濁度の値より、監視日によって濁度が変化している傾向にある。監視日2回 目~4 回目は現場海域にうねりがあり、潜水士によると水底から煙のように 濁りが発生していたことが確認されている。

表256 濁り監視結果(監視1回目)

	水深		濁度	監視データ	(度)		参考データ(度)						
	(m)	St.O	St.A	St.B	St.C	St.D	St.E	St.F	·				
	0.5	0.57	0.46	0.51	0.46	0.57	0.57	0.51					
	1	0.51	0.51	0.51	0.51	0.51	0.51	0.51					
	2	0.51	0.51	0.51	0.51	0.57	0.51	0.57					
	3	0.46	0.51	0.51	0.51	0.57	0.51	0.57					
浚	4	0.51	0.51	0.51	0.51	0.63	0.57	0.68					
渫	5	0.51	0.57	0.51	0.57	0.68	0.63	0.57					
作	6	0.63	0.91	0.57	0.68	0.68	0.63	0.63					
盎	7	0.63	0.97	0.63	0.97	0.68	0.63	0.63					
業前	8	0.68	0.93	0.85	1.14	0.74	0.68	0.74					
Bil	9	0.74	0.80	1.08	1.20	0.68	0.68	0.85					
	10	1.03	1.27	1.03	1.08	0.91	0.97	0.91					
	11	1.03		1.37	1.08	1.08		1.08					
	12	1.14		1.31	1.71	1.54		1.88					
	13	3.59		1.88		2.11							
	着底	13.5m	10.8m	13.3m	12.5m	13.4m	10.9m	12.8m					
	水深			監視データ			参考データ(度)						
	(m)	St.O	St.A	St.B	St.C	St.D	St.E	St.F	St.G	St.H	St.I		
	0.5	1.03	2.22	0.51	0.46	0.51	0.57	0.46	0.51	0.80	0.57		
	1	0.74	0.68	0.57	0.51	0.51	0.51	0.46	0.51	0.51	0.57		
	2	0.97	0.51	0.57	0.51	0.51	0.51	0.51	0.51	0.51	0.57		
	3	0.85	0.57	0.57	0.51	0.51	0.51	0.51	0.51	0.51	0.57		
浚	4	0.85	0.57	0.57	0.51	0.51	0.57	0.51	0.51	0.51	0.57		
渫	5	0.85	0.63	0.57	0.63	0.57		0.51	0.51	0.57	0.57		
作	6	0.97	0.80	0.85	0.91	1.14		0.63	0.82	0.97	0.63		
業	7	1.08	0.91	0.97	0.80	1.03		0.91	0.80	1.08	0.68		
中	8	1.37	1.88	1.08	0.87	0.91		0.91	0.68	0.80	0.80		
1 ' 1	9	1.54		0.91	0.80	0.97		0.97	0.74	1.03	1.08		
	10	1.77		1.14	1.08	1.08		1.03	0.97	1.94	1.48		
	11	1.37		1.54	1.59	1.25		2.51	2.34		2.08		
	12	3.08		2.11	3.62	4.49					2.12		
	13										2.56		
	 着底	12.5m	8.5m	12.4m	12.1m	12.4m	4.2m	11.7m	11.4m	10.5m	13.4m		

表257 濁り監視結果(監視2回目)

水深		濁度	監視データ	(度)		参考データ(度)				
(m)	St.O	St.A	St.B	St.C	St.D	St.G	St.A'			
0.5	2.16	2.52	2.11	2.22	1.99	2.16	2.22		i	
1						_				
2										
_										
	2.34	2.11	2.11	2.28	1.94	2.16	2.56			
	2.34	2.34	2.11	2.68	1.54	2.28	3.30			
7	2.68	2.39	1.94	2.68	1.42	2.45	3.70			
8	3.99	3.25	1.94	3.02	1.54	2.96	3.42			
9	4.16		1.94	4.90	1.48	5.76	3.59			
10	3.19		1.88	4.67	1.54	7.69	2.51			
11	2.73		1.71	4.90		8.04	3.93			
12	4.84		1.79	9.41		7.69	5.13			
13	5.88		2.69							
	13.2m				10.8m	12.4m				
				· /						
-										
-										
						_				
-										
_					-	-	-			
_		1.87								
-										
	_									
9	2.82		2.68	2.34	2.45	1.42	2.07			
10	3.85		2.68	2.28	1.65	1.71	2.11			
	5.93		1.65	3.08	1.99	2.22	3.65 8.09			
11			0.00				× na			
12	10.21		3.30	6.10	3.76		0.03			
			3.30	6.10	9.06		0.03			
	2 3 4 5 6 7 8 9 10 11 12 13 着底 水深 (m) 0.5 1 2 3 4 5 6 7	2 2.16 3 2.22 4 2.39 5 2.34 6 2.34 7 2.68 8 3.99 9 4.16 10 3.19 11 2.73 12 4.84 13 5.88 着底 13.2m 水深 (m) St.O 0.5 1.37 1 1.25 2 1.28 3 1.26 4 1.26 5 1.40 6 1.51 7 1.57 8 1.97	2 2.16 2.16 3 2.22 2.05 4 2.39 2.39 5 2.34 2.11 6 2.34 2.34 7 2.68 2.39 8 3.99 3.25 9 4.16 10 3.19 11 2.73 12 4.84 13 5.88 本 3 (m) St.O St.A 0.5 1.37 1.37 1 1.25 1.14 2 1.28 1.25 3 1.26 1.54 4 1.26 1.77 5 1.40 1.77 6 1.51 1.87 7 1.57 8 8 1.97	2 2.16 2.16 1.99 3 2.22 2.05 2.05 4 2.39 2.31 2.11 2.11 5 2.34 2.11 2.11 7 2.68 2.39 1.94 8 3.99 3.25 1.94 9 4.16 1.94 10 3.19 1.88 11 2.73 1.71 12 4.84 1.79 13 5.88 2.69 基底 3.2m 3.3m 13m 水深 万度監視データ (m) St.O St.A St.B 0.5 1.37 1.37 1.77 1 1.25 1.14 1.65 2 1.28 1.25 1.59 3 1.26 1.54 1.59 4 1.26 1.77 1.59 5 1.40 1.77 1.71 6 1.51 1.87 1.82 7 1.57 1.65 8 1.97 2.45	2 2.16 2.16 1.99 2.11 3 2.22 2.05 2.05 2.22 4 2.39 2.39 2.11 2.11 5 2.34 2.11 2.11 2.28 6 2.34 2.34 2.11 2.68 7 2.68 2.39 1.94 2.68 8 3.99 3.25 1.94 3.02 9 4.16 1.94 4.90 10 3.19 1.88 4.67 11 2.73 1.71 4.90 12 4.84 1.79 9.41 13 5.88 2.69 *** ** ** ** **	2 2.16 2.16 1.99 2.11 1.88 3 2.22 2.05 2.05 2.22 1.77 4 2.39 2.39 2.11 2.11 1.94 5 2.34 2.11 2.11 2.28 1.94 6 2.34 2.34 2.11 2.68 1.54 7 2.68 2.39 1.94 2.68 1.42 8 3.99 3.25 1.94 3.02 1.54 9 4.16 1.94 4.90 1.48 10 3.19 1.88 4.67 1.54 11 2.73 1.71 4.90 12 4.84 1.79 9.41 13 5.88 2.69 8 1.32m 8.3m 13m 12.5m 10.8m 7 8 1.37 1.37 1.77 1.42 1.20 1 1.25 1.14 1.65 1.54 1.25 2 1.28 1.25 1.59 1.31 1.20 4 1.26 1.54 1.59 1.31 1.20 4 1.26 1.77 1.59 1.59 1.20 6	2 2.16 2.16 1.99 2.11 1.88 2.68 3 2.22 2.05 2.05 2.22 1.77 2.39 4 2.39 2.39 2.11 2.11 1.94 2.16 5 2.34 2.11 2.11 2.28 1.94 2.16 6 2.34 2.34 2.11 2.68 1.54 2.28 7 2.68 2.39 1.94 2.68 1.42 2.45 8 3.99 3.25 1.94 3.02 1.54 2.96 9 4.16 1.94 4.90 1.48 5.76 10 3.19 1.88 4.67 1.54 7.69 11 2.73 1.71 4.90 8.04 12 4.84 1.79 9.41 7.69 13 5.88 2.69 10.8m 12.4m 水深 適度監視データ(度) 10.8m 12.4m 水深 適度監視データ(度) 10.8m 12.4m 大深 1.37 1.77 1.42 1.20 <td>2 2.16 2.16 1.99 2.11 1.88 2.68 2.22 3 2.22 2.05 2.05 2.22 1.77 2.39 2.28 4 2.39 2.39 2.11 2.11 1.94 2.16 2.34 5 2.34 2.11 2.11 2.28 1.94 2.16 2.56 6 2.34 2.34 2.11 2.68 1.54 2.28 3.30 7 2.68 2.39 1.94 2.68 1.42 2.45 3.70 8 3.99 3.25 1.94 3.02 1.54 2.96 3.42 9 4.16 1.94 4.90 1.48 5.76 3.59 10 3.19 1.88 4.67 1.54 7.69 2.51 11 2.73 1.71 4.90 8.04 3.93 12 4.84 1.79 9.41 7.69 5.13 13 5.88 2.69 8 8 8.04 3.93 15 5.84 1.54<</td> <td> 2 2.16 2.16 1.99 2.11 1.88 2.68 2.22 3 2.22 2.05 2.05 2.22 1.77 2.39 2.28 4 2.39 2.39 2.11 2.11 1.94 2.16 2.34 5 2.34 2.11 2.11 2.28 1.94 2.16 2.56 6 2.34 2.31 2.11 2.68 1.54 2.28 3.30 7 2.68 2.39 1.94 2.68 1.54 2.28 3.30 8 3.99 3.25 1.94 3.02 1.54 2.96 3.42 9 4.16 1.94 4.90 1.48 5.76 3.59 10 3.19 1.88 4.67 1.54 7.69 2.51 11 2.73 1.71 4.90 8.04 3.93 12 4.84 1.79 9.41 7.69 5.13 13 5.88 2.69 </td>	2 2.16 2.16 1.99 2.11 1.88 2.68 2.22 3 2.22 2.05 2.05 2.22 1.77 2.39 2.28 4 2.39 2.39 2.11 2.11 1.94 2.16 2.34 5 2.34 2.11 2.11 2.28 1.94 2.16 2.56 6 2.34 2.34 2.11 2.68 1.54 2.28 3.30 7 2.68 2.39 1.94 2.68 1.42 2.45 3.70 8 3.99 3.25 1.94 3.02 1.54 2.96 3.42 9 4.16 1.94 4.90 1.48 5.76 3.59 10 3.19 1.88 4.67 1.54 7.69 2.51 11 2.73 1.71 4.90 8.04 3.93 12 4.84 1.79 9.41 7.69 5.13 13 5.88 2.69 8 8 8.04 3.93 15 5.84 1.54<	2 2.16 2.16 1.99 2.11 1.88 2.68 2.22 3 2.22 2.05 2.05 2.22 1.77 2.39 2.28 4 2.39 2.39 2.11 2.11 1.94 2.16 2.34 5 2.34 2.11 2.11 2.28 1.94 2.16 2.56 6 2.34 2.31 2.11 2.68 1.54 2.28 3.30 7 2.68 2.39 1.94 2.68 1.54 2.28 3.30 8 3.99 3.25 1.94 3.02 1.54 2.96 3.42 9 4.16 1.94 4.90 1.48 5.76 3.59 10 3.19 1.88 4.67 1.54 7.69 2.51 11 2.73 1.71 4.90 8.04 3.93 12 4.84 1.79 9.41 7.69 5.13 13 5.88 2.69	

表258 濁り監視結果(監視3回目)

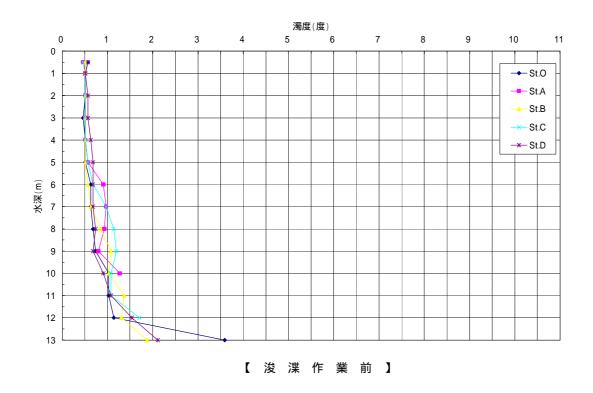

	水深		濁度	監視データ	(度)		参考データ(度)					
	(m)	St.O	St.A	St.B	St.C	St.D	St.E	St.F	St.G	St.H		
	0.5	1.37	1.48	1.59	1.65	1.25	1.65	1.25	1.77	1.31		
	1	1.42	1.37	1.42	1.59	1.20	1.54	1.31	1.71	1.25		
	2	1.48	1.37	1.42	1.65	1.20	1.42	1.08	1.65	1.20		
	3	1.48	1.31	1.20	1.59	1.14	1.54	0.91	1.65	1.20		
浚	4	1.42	1.48	1.31	1.65	1.20	1.48	1.03	1.71	1.14		
渫	5	1.54	1.54	1.14	1.71	1.20	1.54	1.03	1.65	1.14		
作	6	1.65	1.54	1.14	1.88	1.25	1.54	1.03	1.65	1.14		
新	7	1.54	1.71	1.20	1.88	1.20	1.54	1.14	1.77	1.20		
業前	8	1.71	1.59	1.20	1.88	1.20		1.08	2.34	1.14		
Ηú	9	1.54	1.54	1.14	3.13	1.20		1.08	2.45	1.14		
	10	1.54	1.54	1.20	4.12	1.20		1.31	2.39	1.14		
	11	1.48	1.54	1.71	5.13	1.14		1.82	2.56	1.20		
	12	1.48	3.48	3.48	5.19	1.14		1.37				
	13	1.94	4.10	5.41	6.28	2.11						
	着底	13m	13.2m	13.2m	13.2m	13.2m	7.8m	12.6m	12.2m	11.6m		
	水深			監視データ			参考データ(度)					
	(m)	St.O	St.A	St.B	St.C	St.D	St.F	St.G	St.H			
	0.5	0.74	1.08	1.14	0.91	0.74	0.68	0.74	0.68			
	1	0.74	0.85	0.97	0.68	0.74	0.68	0.74	0.68			
	2	0.74	0.68	0.85	0.68	0.63	0.68	0.68	0.68			
	3	0.74	0.74	0.80	0.63	0.63	0.68	0.74	0.68			
浚	4	0.74	0.05	0.68	0.74	0.68	0.68	0.74	0.68			
			0.85									
渫	5	0.74	0.91	0.74	0.74	0.68	0.74	0.80	0.68			
渫作	5 6	0.74 0.74	0.91 1.08	0.74 0.85	0.74 0.80	0.68 0.74	0.74 0.74	0.80 0.80	0.68 0.74			
漢 作 業	5 6 7	0.74 0.74 0.80	0.91 1.08 1.08	0.74 0.85 0.91	0.74 0.80 0.85	0.68 0.74 0.85	0.74 0.74 0.80	0.80 0.80 0.91	0.68 0.74 0.80			
渫作	5 6 7 8	0.74 0.74 0.80 0.97	0.91 1.08 1.08 1.08	0.74 0.85 0.91 0.85	0.74 0.80 0.85 1.08	0.68 0.74 0.85 0.80	0.74 0.74 0.80 0.80	0.80 0.80 0.91 1.20	0.68 0.74 0.80 0.85			
渫 作 業	5 6 7 8 9	0.74 0.74 0.80 0.97 1.20	0.91 1.08 1.08 1.08 1.14	0.74 0.85 0.91 0.85 1.14	0.74 0.80 0.85 1.08 1.20	0.68 0.74 0.85 0.80 0.91	0.74 0.74 0.80 0.80 0.91	0.80 0.80 0.91 1.20 1.54	0.68 0.74 0.80 0.85 1.37			
渫 作 業	5 6 7 8 9	0.74 0.74 0.80 0.97 1.20 1.37	0.91 1.08 1.08 1.08	0.74 0.85 0.91 0.85 1.14 1.37	0.74 0.80 0.85 1.08 1.20 1.78	0.68 0.74 0.85 0.80 0.91 1.48	0.74 0.74 0.80 0.80 0.91 1.03	0.80 0.80 0.91 1.20 1.54 1.25	0.68 0.74 0.80 0.85 1.37 1.71			
渫 作 業	5 6 7 8 9 10	0.74 0.74 0.80 0.97 1.20	0.91 1.08 1.08 1.08 1.14	0.74 0.85 0.91 0.85 1.14 1.37 1.71	0.74 0.80 0.85 1.08 1.20 1.78 1.94	0.68 0.74 0.85 0.80 0.91 1.48 1.42	0.74 0.74 0.80 0.80 0.91 1.03 1.65	0.80 0.80 0.91 1.20 1.54 1.25	0.68 0.74 0.80 0.85 1.37			
渫 作 業	5 6 7 8 9 10 11	0.74 0.74 0.80 0.97 1.20 1.37	0.91 1.08 1.08 1.08 1.14	0.74 0.85 0.91 0.85 1.14 1.37 1.71 3.02	0.74 0.80 0.85 1.08 1.20 1.78	0.68 0.74 0.85 0.80 0.91 1.48	0.74 0.74 0.80 0.80 0.91 1.03	0.80 0.80 0.91 1.20 1.54 1.25	0.68 0.74 0.80 0.85 1.37 1.71			
渫 作 業	5 6 7 8 9 10	0.74 0.74 0.80 0.97 1.20 1.37	0.91 1.08 1.08 1.08 1.14	0.74 0.85 0.91 0.85 1.14 1.37 1.71	0.74 0.80 0.85 1.08 1.20 1.78 1.94	0.68 0.74 0.85 0.80 0.91 1.48 1.42	0.74 0.74 0.80 0.80 0.91 1.03 1.65	0.80 0.80 0.91 1.20 1.54 1.25	0.68 0.74 0.80 0.85 1.37 1.71			
渫 作 業	5 6 7 8 9 10 11	0.74 0.74 0.80 0.97 1.20 1.37	0.91 1.08 1.08 1.08 1.14	0.74 0.85 0.91 0.85 1.14 1.37 1.71 3.02	0.74 0.80 0.85 1.08 1.20 1.78 1.94	0.68 0.74 0.85 0.80 0.91 1.48 1.42	0.74 0.74 0.80 0.80 0.91 1.03 1.65	0.80 0.80 0.91 1.20 1.54 1.25	0.68 0.74 0.80 0.85 1.37 1.71			

表259 濁り監視結果(監視4回目)

	水深		濁度	監視データ	(度)			参:	考データ(月	芰)	
	(m)	St.O	St.A	St.B	St.C	St.D	St.E	St.F	St.G	St.H	
	0.5	0.88	0.80	0.74	0.85	0.80	0.91	0.68	0.74	0.80	
	1	0.68	0.80	0.74	0.85	0.80	0.74	0.68	0.74	0.80	
	2	0.68	0.80	0.74	0.80	0.74	0.74	0.68	0.74	0.74	
	3	0.74	0.68	0.74	0.68	0.68	0.68	0.68	0.74	0.74	
浚	4	0.68	0.68	0.80	0.74	0.68	0.68	0.68	0.68	0.68	
渫	5	0.68	0.68	0.80	0.68	0.74	0.68	0.68	0.68	0.68	
作	6	0.68	0.68	0.80	0.68	0.74	0.68	0.74	0.68	0.68	
茶	7	0.80	0.80	0.80	0.74	0.74	0.74	0.74	0.74	0.74	
: 業 前	8	1.03	0.91	0.92	0.85	0.80	0.68	0.80	0.74	0.80	
ניה	9	1.03	1.65	0.98	0.91	0.80		1.65	0.74	1.20	
	10	1.14	1.88	1.11	0.91	1.08		2.05	0.74	1.14	
	11	1.99		1.43	0.91	2.39		1.59	1.08		
	12	2.68		2.66	0.91	2.85		1.48	1.25		
	13					8.05			3.48		
	着底	12.2m	10.3m	12.1m	12.6m	13.2m	8.7m	12m	13.6m	10.8m	
						.0.=	0.7111				
	水深		濁度	監視データ	(度)			参	考データ(月	芰)	
		St.O		監視データ St.B	(度) St.C	St.D	St.E	参 St.F	考データ(B St.G	雯) St.H	
	水深 (m) 0.5		濁度! St.A 0.80	監視データ St.B 0.80	(度) St.C 0.80	St.D 0.74	St.E 0.68	参: St.F 0.74	考データ(原 St.G 0.74	旻) St.H 0.74	
	水深 (m) 0.5 1		濁度 St.A 0.80 0.80	監視データ St.B 0.80 0.74	(度) St.C 0.80 0.74	St.D 0.74 0.68	St.E 0.68 0.80	多 St.F 0.74 0.74	考データ(原 St.G 0.74 0.63	芝) St.H 0.74 0.74	
	水深 (m) 0.5 1 2		濁度! St.A 0.80 0.80 0.68	監視データ St.B 0.80 0.74 0.74	(度) St.C 0.80 0.74 0.63	St.D 0.74 0.68 0.68	St.E 0.68 0.80 0.63	St.F 0.74 0.74 0.74	考データ(原 St.G 0.74 0.63 0.63	きり St.H 0.74 0.74 0.68	
	水深 (m) 0.5 1 2 3		濁度 St.A 0.80 0.80 0.68 0.68	監視データ St.B 0.80 0.74 0.74 0.74	(度) St.C 0.80 0.74 0.63 0.68	St.D 0.74 0.68 0.68 0.68	St.E 0.68 0.80 0.63 0.68	多: St.F 0.74 0.74 0.74 0.74	考データ(月 St.G 0.74 0.63 0.63 0.68	St.H 0.74 0.74 0.68 0.74	
浚	水深 (m) 0.5 1 2 3 4		濁度 St.A 0.80 0.80 0.68 0.68 0.68	監視データ St.B 0.80 0.74 0.74 0.74 0.68	(度) St.C 0.80 0.74 0.63 0.68 0.74	St.D 0.74 0.68 0.68 0.68 0.74	St.E 0.68 0.80 0.63 0.68 0.68	St.F 0.74 0.74 0.74 0.74 0.74 0.74 0.74	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68	St.H 0.74 0.74 0.68 0.74 0.74	
	水深 (m) 0.5 1 2 3 4 5		濁度 St.A 0.80 0.80 0.68 0.68 0.68	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80	St.D 0.74 0.68 0.68 0.68 0.74 0.74	St.E 0.68 0.80 0.63 0.68 0.68	St.F 0.74 0.74 0.74 0.74 0.74 0.74 0.68	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.68	St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74	
渫	水深 (m) 0.5 1 2 3 4 5 6		濁度 St.A 0.80 0.80 0.68 0.68 0.68 0.68	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97	St.D 0.74 0.68 0.68 0.68 0.74 0.74	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.68 0.74	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫作	水深 (m) 0.5 1 2 3 4 5 6		獨度 St.A 0.80 0.80 0.68 0.68 0.68 0.68 0.68 0.74	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97	St.D 0.74 0.68 0.68 0.68 0.74 0.74 0.74	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.68 0.74 0.74	St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74	
渫 作 業	水深 (m) 0.5 1 2 3 4 5 6 7		獨度 St.A 0.80 0.80 0.68 0.68 0.68 0.68 0.68 0.74	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.74 0.74 0.74 0.74 0.85	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.68 0.74 0.74	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫作	水深 (m) 0.5 1 2 3 4 5 6 7 8		獨度 St.A 0.80 0.68 0.68 0.68 0.68 0.68 0.74 0.74	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68 0.80 1.03	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.74 0.74 0.74 0.74 0.85 1.08	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80 0.91	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97 1.08	考データ(月 St.G 0.74 0.63 0.63 0.68 0.68 0.68 0.74 0.74 0.80 0.97	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫 作 業	水深 (m) 0.5 1 2 3 4 5 6 7 8 9		獨度 St.A 0.80 0.68 0.68 0.68 0.68 0.68 0.74 0.74 0.74 0.80	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68 0.68 1.03 1.48	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.68 0.74 0.74 0.74 0.74 1.08 1.14	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97 1.08 1.25	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.68 0.74 0.74 0.80 0.97	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫 作 業	水深 (m) 0.5 1 2 3 4 5 6 7 8 9		獨度 St.A 0.80 0.68 0.68 0.68 0.68 0.68 0.74 0.74	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68 0.80 1.03 1.48 2.05	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.74 0.74 0.74 0.74 0.85 1.08	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80 0.91	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97 1.08	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.74 0.74 0.80 0.97 1.25	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫 作 業	水深 (m) 0.5 1 2 3 4 5 6 7 8 9 10 11		獨度 St.A 0.80 0.68 0.68 0.68 0.68 0.68 0.74 0.74 0.74 0.80	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68 1.03 1.48 2.05 2.79	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.68 0.74 0.74 0.74 0.74 1.08 1.14	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80 0.91	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97 1.08 1.25	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.68 0.74 0.74 0.80 0.97	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫 作 業	水深 (m) 0.5 1 2 3 4 5 6 7 8 9		獨度 St.A 0.80 0.68 0.68 0.68 0.68 0.68 0.74 0.74 0.74 0.80	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68 0.80 1.03 1.48 2.05	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.68 0.74 0.74 0.74 0.74 1.08 1.14	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80 0.91	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97 1.08 1.25	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.74 0.74 0.80 0.97 1.25	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	
渫 作 業	水深 (m) 0.5 1 2 3 4 5 6 7 8 9 10 11		獨度 St.A 0.80 0.68 0.68 0.68 0.68 0.68 0.74 0.74 0.74 0.80	監視データ St.B 0.80 0.74 0.74 0.74 0.68 0.68 0.68 0.68 1.03 1.48 2.05 2.79	(度) St.C 0.80 0.74 0.63 0.68 0.74 0.80 0.97 0.97 0.97 0.97	St.D 0.74 0.68 0.68 0.68 0.74 0.74 0.74 0.74 1.08 1.14	St.E 0.68 0.80 0.63 0.68 0.68 0.74 0.80 0.74 0.80 0.91	St.F 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.85 0.97 1.08 1.25	考データ(原 St.G 0.74 0.63 0.63 0.68 0.68 0.74 0.74 0.80 0.97 1.25	きり St.H 0.74 0.74 0.68 0.74 0.74 0.74 0.74 0.74	

表25-10 濁り監視結果(監視5回目)

	水深		濁度	監視データ	(度)			参:	考データ(月	芰)	
	(m)	St.O	St.A	St.B	St.C	St.D	St.E	St.G	St.H	St.K	
	0.5	0.74	0.74	0.74	0.80	0.85	0.97	0.80	0.74	1.08	
	1	0.68	0.74	0.74	0.85	0.85	0.97	0.90	0.74	0.93	
	2	0.63	0.74	0.68	0.85	0.80	0.74	0.85	0.74	0.91	
	3	0.74	0.68	0.68	0.74	0.80	0.85	0.85	0.74	0.97	
浚	4	0.74	0.74	0.68	0.80	0.80	0.91	0.91	0.85	0.97	
渫	5	0.74	0.74	0.68	0.74	0.80	0.91	0.97	0.85	1.08	
作	6	0.68	0.68	0.68	0.74	0.80		0.97	0.85	1.03	
業	7	0.80	0.68	0.74	0.80			0.97	0.91	1.08	
業前	8	0.80	0.74	0.85	0.80			0.91	0.85	1.14	
ניס	9	0.80	0.74	0.97	0.80			0.91	0.85	1.25	
	10	0.80			0.80			0.91	0.91	1.48	
	11	1.08			0.97			0.85		1.48	
	12							0.85		2.25	
	13							1.03		5.30	
	着底	11.3m	9.4m	9.4m	11.3m	6.7m	5.1m	13.1m		13.2m	
	水深			監視データ	(,		参考データ(度)				
	(m)	St.O	St.A	St.B	St.C	St.D	St.E	St.G	St.H	St.K	
	0.5	0.68	0.74	0.85	0.85	0.68	0.80	0.80	0.68	0.85	
	1	0.68	0.68	0.74	0.74	0.68	0.80	0.74	0.68	0.74	
	2	0.63	0.68	0.63	0.74	0.68	0.85	0.68	0.68	0.74	
	3	0.68	0.74	0.63	0.80	0.68	0.85	0.74	0.68	0.74	
浚	4	0.68	0.80	0.63	0.74	0.68	0.74	0.74	0.74	0.74	
渫	5	0.68	0.80	0.68	0.68	0.68	0.74	0.74	0.74	0.74	
作	6	0.74	0.80	0.74	0.74	0.74	0.85	0.80	0.74	0.91	
業	7	0.80	0.80	0.91	0.85	0.80		0.85	0.97	0.97	
中	8	0.80	1.37	0.91	0.97	0.80		0.85	0.85	1.03	
	9	0.91	1.71	1.03	1.08	1.08		1.03	1.03	1.03	
	10	1.37			1.14	1.48		1.08		1.42	
	11	1.59			2.22			2.67		2.18	
	12							3.25		2.39	
	13									9.86	
	* 6	44.0	0.4:	0.5	44 0	40 F:	0.4	40.0	0.7	40.0	
1	着底	11.2m	9.4m	9.5m	11.8m	10.5m	6.4m	12.2m	9.7m	13.3m	

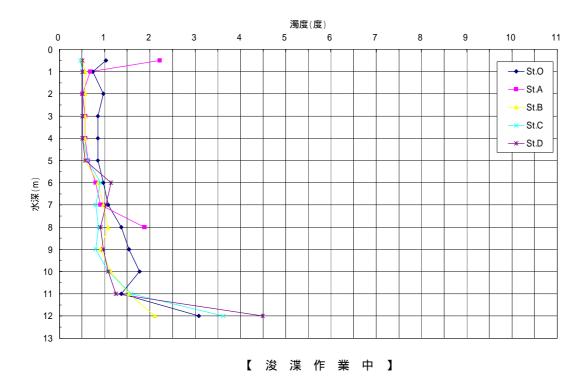
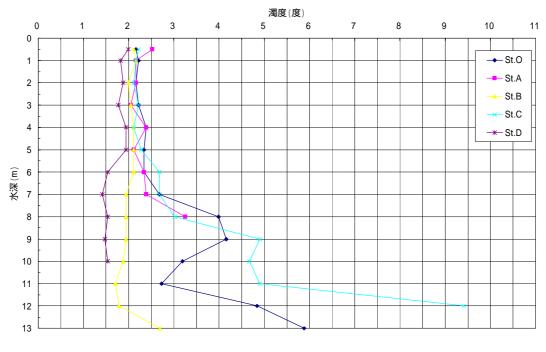
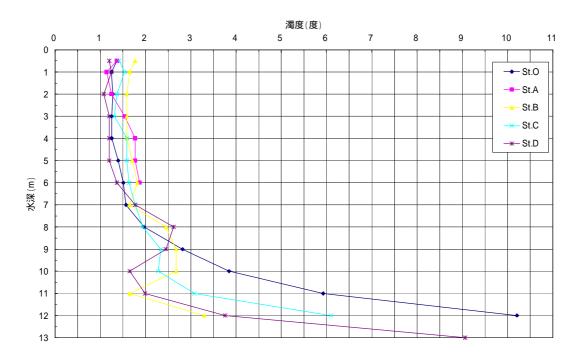
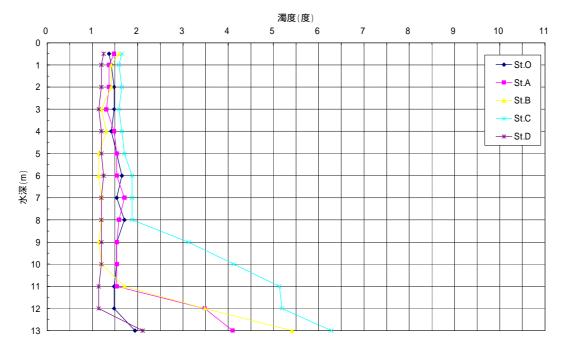
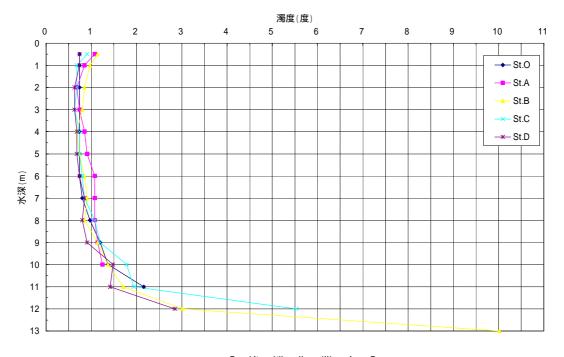




図25-10 濁り監視結果(監視1回目)

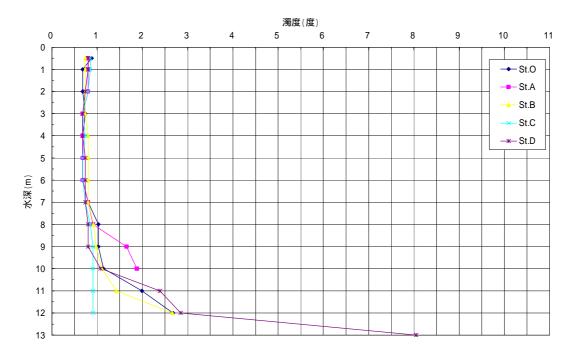


【浚渫作業前】

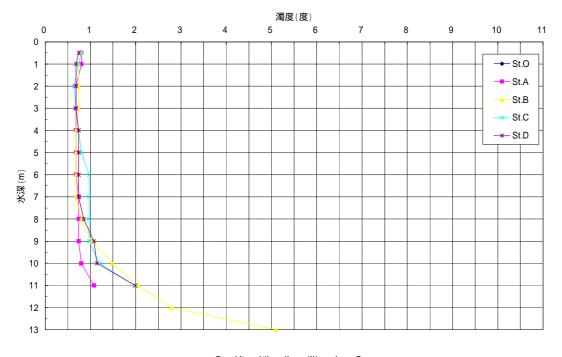


【浚渫作業中】

図25-11 濁り監視結果(監視2回)

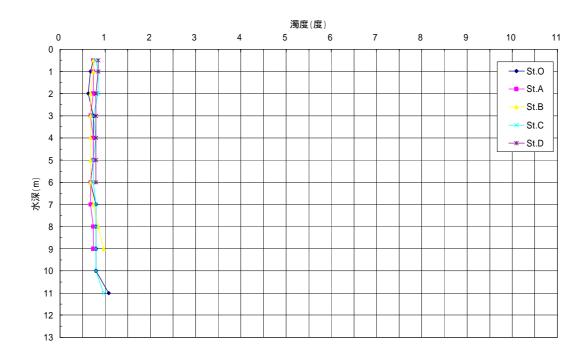


【浚渫作業前】

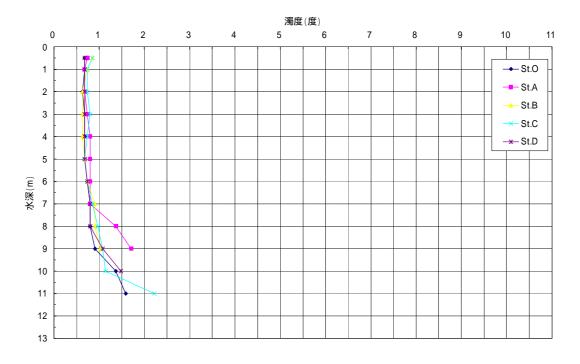


【浚渫作業中】

図25-12 濁り監視結果(監視3回)



【浚渫作業前】



【浚渫作業中】

図25-13 濁り監視結果(監視4回)

【浚渫作業前】

【浚渫作業中】

図25-14 濁り監視結果(監視5回)

(3) 浚渫時間

「2.5.6の(1)浚渫状況」の項にて記したように、4つのサクションヘッドにて浚渫したところ、作業効率、浚渫状況等から実際に泥土除去に使用できる可能性のある従来型およびジェット併用 型を用いて試験区域内において浚渫を実施した。ここでは、その際収集したデータのうち浚渫時間の測定結果を示す。このとき試験区域とは「2.4.5.試験区域」にて示した場所のことである。

従来型、ジェット併用 型それぞれが試験区域を浚渫するのに掛かった時間は表 2 5 -11 の通りである。

従来型は 105 分、ジェット併用 型は 100 分とほぼ同様の時間を要した。 また 1m³ あたりの浚渫時間及び 1 日当たりの作業面積をそれぞれ算定した。1 日の実稼働時間は 6 時間と仮定している。

項目	従 来 型	ジェット併用 型
試験区域の浚渫に要した時間	105分	100分
1m ³ 当たりの浚渫時間 ¹	4.2分	4分
1日当たりの作業面積 2	85.7m²	90 m²

表 2 -5 -11 試験区域内の浚渫時間

(4) 浚渫排水中の懸濁物量(SS)

試験区域内を浚渫した際の、浚渫排水中に含まれる懸濁物量(SS:Suspended Solid)の分析結果を表 2.5.42に示す。

浚渫排水は従来型、ジェット併用 型、それぞれのサクションヘッドにて 浚渫している際に水処理ヤードにて採水したものである。採水は水処理設備 の流入口に取付けた採水口(13mm)にて行った。浚渫排水には、泥土のほ か砂礫などの混在物量も含まれるが、 13mm の採水口からは大型の礫の捕捉 は困難になるが、ここでは SS 含泥率として評価する。また SS は排水中に 含まれる懸濁物の質量である。その為シルト粘土の細粒分より砂礫の粗粒分 を多く含む排水の方が SS 値が大きくなる。

含泥率(SS)は浚渫状況に大きく影響を受けるため、データの増減が大きい。従来型では潜水士の吸込み方により含泥率が変動する。またジェット併用 型は攪拌開始時と終了時、移動時の各作業工程(図 258)において含泥率が変動する。

¹ 試験区域の面積:25 m²

^{2 1}日の作業時間を6時間(実稼動時間)と仮定

表 2 5 -12 浚渫排水中の懸濁物量

サクションヘッド	試料名	S S (m g / L)	含泥率 (%)	平均值 (%)	
	浚渫排水 No.1	38,000	3.8		
従 来 型	浚渫排水 No.2	21,000	2.1	2.25	
	浚渫排水 No.3 8,500 0.85		0.85		
	浚渫排水 No.1	9,300	0.93		
ジェット併用 型	浚渫排水 No.2	900	0.09	0.39	
	浚渫排水 No.3	1,500	0.15		

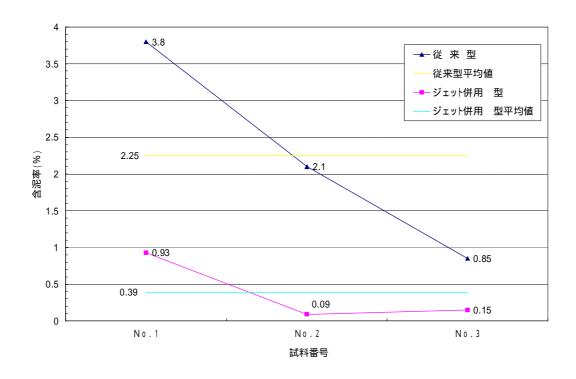


図25-15 浚渫排水中の含泥率

(5) 浚渫前後の堆積土の状況

試験区域の浚渫前後の状況を堆積土から評価する為に、浚渫地点の表層土を採取し粒度分析を行った。土砂採取は浚渫前後に行い、採取した地点は試験区域内の中央付近とそこから左右に1.5mほど離れた2点の合計3地点である(図25-16参照)。

粒度分析結果は表 2 5 -13 に、分析結果を元に作成した粒径加積曲線を図 2 5 -17、図 2 5 -18 に示す。また採泥した試料の写真および分析結果より算出した各試料の粒度組成の平均値を、写真 2 5 -43~写真 2 5 -46 と図 2 5 -19~図 2 5 -22 に示す。

ジェット併用 型、従来型とも浚渫前には粘土、シルト、細砂等の細粒分が多く含まれているのに対し、浚渫後は礫を中心に粗流分の割合が増している。これは地盤の分類からも分かるように浚渫前には粘性土または砂まじり粘性土等であった底質が、浚渫後は分級された砂まじり礫等の底質へと変化した。

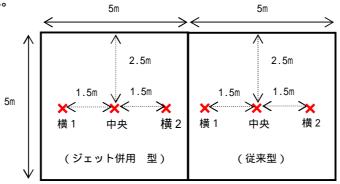


図 2 5 -16 採泥地点

表 2 5 -13 浚渫前後の表層土の粒度分析結果

			+####+##	粒度組成							
サクションヘッド	検(本 名	地盤材料の 分類名	粗礫分	中礫分	細礫分	粗砂分	中砂分	細砂分	シルト分	粘土分
			77 AL L	%	%	%	%	%	%	%	%
		横 1	砂まじり粘性土	0.0	0.0	0.0	0.0	1.0	43.6	56.4	38.0
	浚渫前	中央	砂まじり粘性土	0.0	0.0	1.1	0.7	2.7	5.3	50.5	39.7
	/友/未刊	横2	粘性土	0.0	0.0	0.4	0.5	0.4	3.8	52.7	42.2
ジェット併用 型		平均		0.0	0.0	0.5	0.4	1.4	17.6	53.2	40.0
		横 1	分級された砂まじり礫	29.5	48.7	16.4	4.1	0.8	0.3	0.1	0.1
	浚渫後	中央	分級された砂まじり礫	12.9	50.5	28.1	6.5	1.4	0.1	0.2	0.3
		横2	分級された砂まじり礫	35.9	40.4	18.1	3.6	1.1	0.4	0.3	0.2
		平均		26.1	46.5	20.9	4.7	1.1	0.3	0.2	0.2
	浚渫前	横1	砂礫質粘性土	0.0	9.3	7.9	5.6	5.9	6.4	51.0	13.9
		中央	砂まじり粘性土質礫	24.1	30.2	8.2	4.9	4.4	2.8	17.0	8.4
	/友/未刊	横2	粘性土質砂質礫	0.0	37.0	12.9	9.8	7.0	3.9	20.8	8.6
従来型		平均		8.0	25.5	9.7	6.8	5.8	4.4	29.6	10.3
龙 木 玉		横1	分級された礫	32.6	55.7	10.6	0.8	0.1	0.1	0.0	0.3
	浚渫後	中央	分級された礫	54.7	31.6	8.3	3.8	0.8	0.2	0.3	0.3
	沒採復	横2	分級された砂まじり礫	0.0	57.0	27.4	10.2	3.6	0.1	1.0	0.7
		平均		29.1	48.1	15.4	4.9	1.5	0.1	0.4	0.4

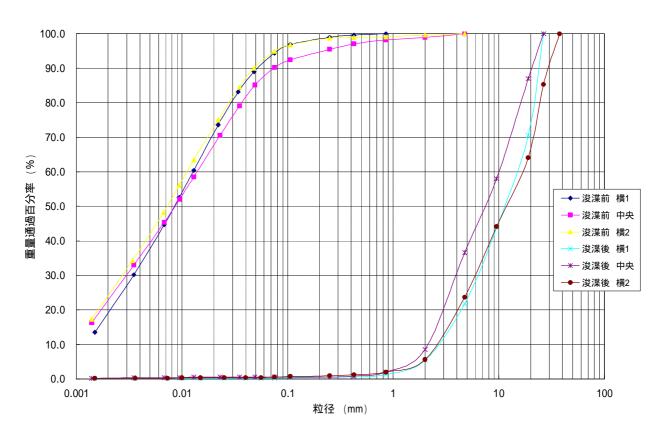


図25-17 粒径加積曲線(ジェット併用型)

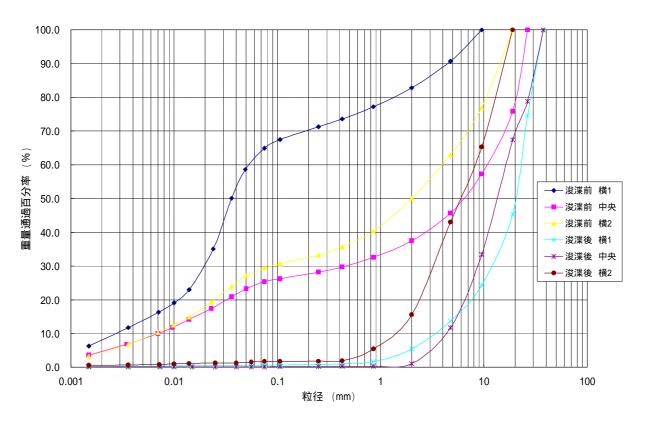


図25-18 粒径加積曲線(従来型)

写真2543 浚渫前の表層土(ジェット併用型);左から横1、中央、横2の試料

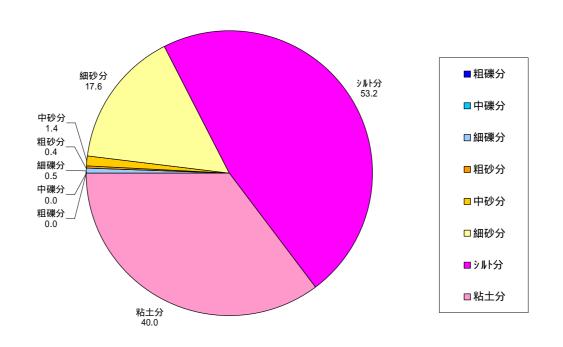


図25-19 浚渫前の表層土の粒度組成(ジェット併用型)

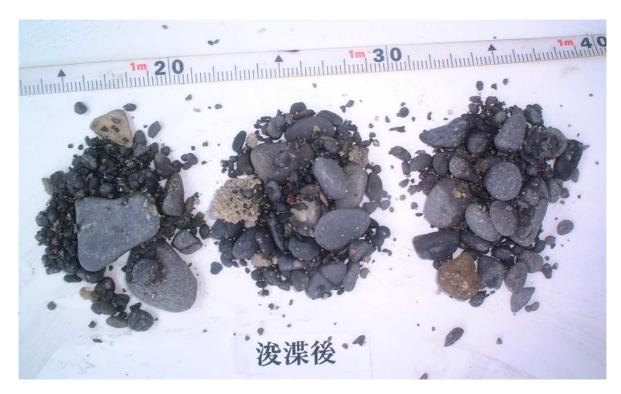


写真2544 浚渫後の表層土(ジェット併用型);左から横1、中央、横2の試料



図25-20 浚渫後の表層土の粒度組成(ジェット併用型)

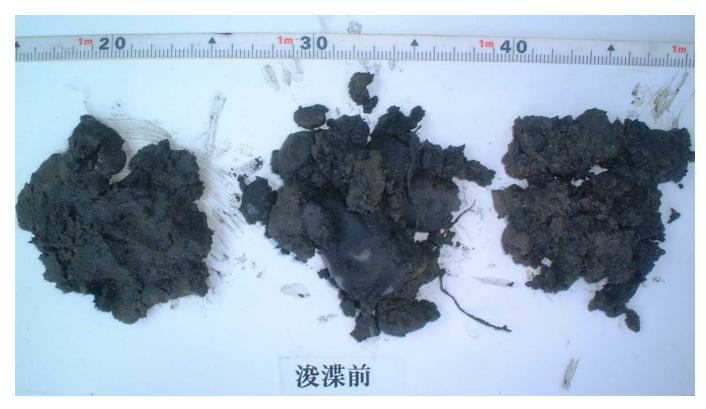


写真2545 浚渫前の表層土(従来型);左から横1、中央、横2の試料

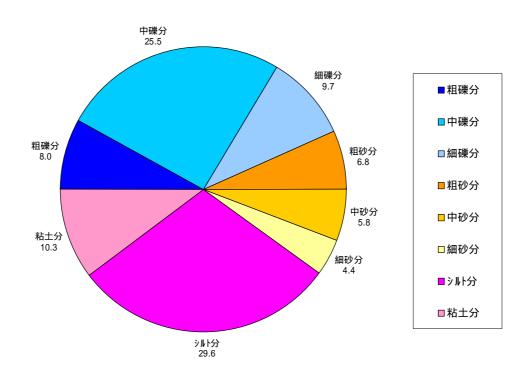


図25-21 浚渫前の表層土の粒度組成(従来型)

写真2546 浚渫後の表層土(従来型);左から横1、中央、横2の試料

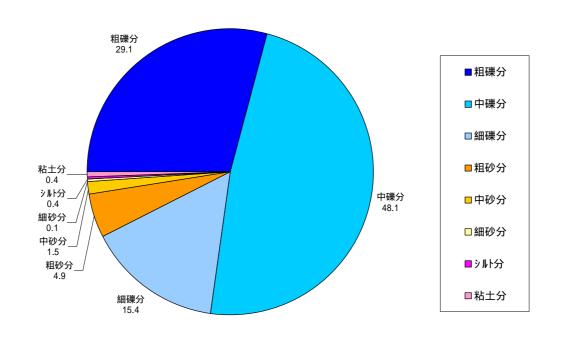


図25-22 浚渫後の表層土の粒度組成(従来型)

(6) 作業船の作業状況

平成 15 年度実証試験報告書の浚渫条件において浚渫中の洋上基地となる作業船は、「操船性の高い小型のもの」を選択することが挙げられた。確かに竜串湾内にて泥土処理を実施する際、作業時間の確保、安全性、経済性などから竜串湾内の漁港に荒天時の非難または停泊できないような船舶を作業船とすることはリスクが高い。従がって今回実施した浚渫試験にて使用した作業船は平成 15 年度実証試験報告書にて提案された小型のクレーン付の作業船(ユニック付潜水士船)を使用した。

以下にこの作業船の使用状況等について記す。

作業船の外観

作業船の外観図は図25-23に示す。

なお作業船は小型のクレーンを装備し、甲板には潜水機材、浚渫機材、発電機等、浚渫に必要な機器類を設置し十分作業できるものである。写真 2 5 3 に船上の状況を示した。

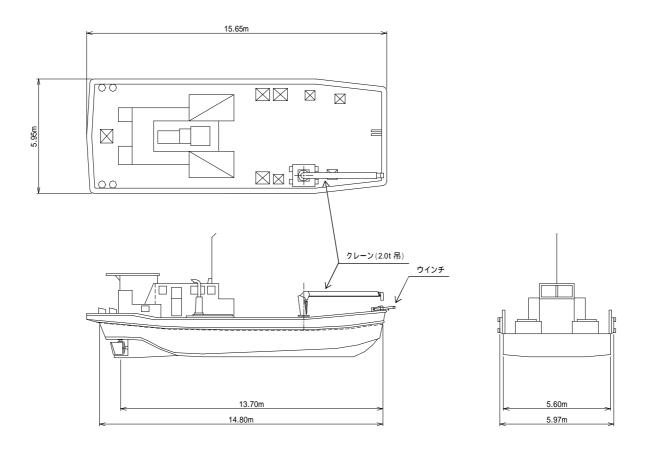


図25-23 作業船の形状

回航時間

作業船の停泊港および避難港は試験海域と同じ竜串湾内にある竜串漁港とした。竜串漁港は竜串湾の東側の湾奥に位置する(図15-1参照)。また停泊状況を写真2547、写真2548に示す。

港から試験地点間での回航時間は約10分である。平成15年度実証試験の際、作業基地とした120トン吊クレーン付台船は土佐清水港からの回航で、2時間~2時間30分程度の時間を有したことを考慮すると大幅に回航時間を削減したことになる。

写真 2 5 47 係留状況

写真 2 5 48 係留状況

アンカーリング

試験海域に到着した作業船は浚渫作業を実施する前にアンカーリング(投錨)により船舶を固定する。固定するアンカーは面(船主側)2本、とも(船尾側)1本とした。アンカーの形状は写真2548の通り。

アンカーリングの作業は約30分程度であり、これも回航時間と同様に平成15年度実証試験の際は1時間から2時間程度要したことを考慮すると、大幅にアンカーリング時間を削減したことになる。

アンカーリングの概略図を図25-24に示す。

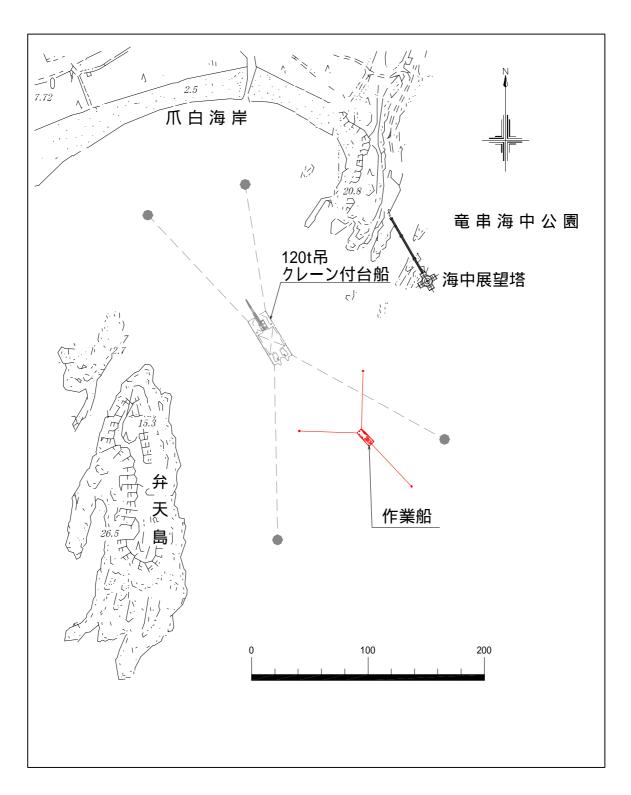


図 2 5 -24 アンカーリング概略図

赤線実線 :作業船

グレー破線:平成 15 年度実証試験時の

120t 吊クレーン付台船

浚渫作業

アンカーリングにより作業船を固定し潜水士が潜水した後、サクションへッド、排砂ポンプなど海中部で必要になる機器類を、作業船のクレーン及びウインチを使用し水中に投入した。排砂ポンプの重量は約270kgでありクレーンの吊荷重の許容範囲内である。しかし大型の台船に比べ小型の作業船は、うねりによるローリングまたはピッチングの影響を受け易く。重量物を吊った状態で船舶が動揺することによりクレーンのブーム、ワイヤー等に許容範囲以上の荷重が発生し破壊する危険性が高い。また船の揺れにより吊物が動揺し潜水士が吊物に挟まる危険性も高くなる。従がって機器類の投入には細心の注意を心掛けるとともに、クレーンにて重量物を吊った状態での作業を禁止した。

作業船の船上は、発電機、サクションヘッド等の機器類を設置しても十分に作業するスペースが確保できた(写真 2 5 49 参照)

写真 2 5 49 機器類設置状況

2.5.7. 考察

(1) サクションヘッド

陸上の水処理ヤードの受入流量の制限から、浚渫の排水量は 120m³/hr とした。平成 15 年度実証試験の際には 200m³/hr 以上の排水量があったことを考えると半分近く少ない。浚渫を担当した潜水士からも「吸込みが弱い(吸込み流速が遅い)」とのコメントがあった。通常、従来型による浚渫の際、流量が少なくなることで吸引力が小さくなり作業効率が低下する。しかし吸込み流速が遅いことにより、潜水士が自らの手によって泥土を掻き集め吸込ませることが可能になり、粗礫など大型の混在物を吸引することなく分別し泥土を選択的に浚渫できたと考えられる。逆に吸込み流速が速い場合は潜水士の手が吸込まれる危険性が高い。

今回、泥土と砂礫等を現位置にて分離吸引する為に、サクションヘッドにジェット併用 型、ジェット併用 型を用い水流により泥土と砂礫を分離する方法を試みた。

ジェット併用 型による浚渫は十分に細粒分と粗粒分が分離し、細粒分を吸引できた。但し攪拌機の水流による濁りの拡散防止、攪拌性能の確認、作業効率の向上などの課題が残った。また大型化により1回の浚渫面積を広げることによる作業効率の向上など、発展性も考えられる。

ジェット併用 型による浚渫は水流による良好な分離吸引は出来なかった。水流の広がりが十分でなかったことが問題と考えられる。従がってノズルの数、ノズルの径、水流の流速などが問題点と考えられる。基本的な作業動作は従来型と同様であるため、問題点の改善により作業性等が向上すると考えられる一方現状では水流による分離吸引より、潜水士の手による泥土の掻き集めの効果が大きく水流を発生させている有効性に欠ける。

その他、岩の間、サンゴ周辺等狭い箇所の浚渫を考慮し、狭窄型のサクションへッドによる浚渫を試みた。狭窄により吸込み流速が増し、吸引力は大きくなるが、礫、ビニールゴミ、植物等の多くの混在物が狭窄部に詰り浚渫作業が停止する弊害が起こった。また平面的に広く泥土を集め吸引することが出来ない為、効率が悪い。岩の間などの狭い箇所は潜水士の手により泥土を掻き集めながら浚渫する従来型の効率が良いと考えられる。サンゴ周辺の浚渫も同様である。

以上、作業状況から効率、安定性などを考えると従来型による浚渫が有効と考えられる。但し従来型を用い効率よく、海底地形に合った浚渫を行う為には熟練した 潜水士による作業が不可欠である。

また今後の発展性等を考慮するとジェット併用 型が有効と思われる。従がって 試験区域における浚渫は従来型とジェット併用 型のサクションヘッドを用いて実 施した。

(2) 試験区域の浚渫

試験区域の浚渫により従来型、ジェット併用 型と浚渫時間、浚渫状況ともほぼ 同様の結果を得た。しかし含泥率は従来型において 2.25%(平均) ジェット併用 型で 0.39%(平均)であった。これはジェット併用 型は図 2.5.8 の作業フロー

から想像すると(1)攪拌吸込みの時点では含泥率は高く、(2)浚渫終了、(3)移動の工程の際には含泥率は低いと考えられる。従がって含泥率の値が大きく変動する為、常に土砂を吸っている従来型より含泥率は低くなることが予想される。

また含泥率 SS より SS は含まれている懸濁物の重量に大きく左右される。従がって細粒分を中心に浚渫していると思われるジェット併用 型より、従来型が粗い粒径の土砂を多く浚渫している場合、含泥率は従来型のほうが大きくなる可能性が高い。

(3) 浚渫効率

試験区域は図24-10の堆積概略図に示すように、泥土堆積層が5cm~15cm程度と薄層である。しかし泥土堆積は泥土層の下の混合層にもあるため、今回の試験では混合層部分の泥土除去も考慮に入れ浚渫を実施した。混合層にある礫等の大型の混在物はできる限り吸込まずに作業した為、泥土層のみを浚渫する場合より効率は悪い。また浚渫効率は浚渫した土砂の体積を見積もることが困難であったため面積にて算定した。1日の浚渫作業時間を6時間とした場合、従来型で85.7m³/日、ジェット併用型で90.0m³/日であった(表25-11参照)。

事業化に向け浚渫効率の考え方、浚渫土量の評価方法など課題となる。

(4) 作業船の作業性

今回使用した作業船は平成 15 年度実証試験の結果を受け操船性の良い小型の作業船を使用した。

浚渫地点への回航時間、アンカーリングの時間からも大幅な時間の短縮に繋がることが明らかになった。また機器類の設置スペース、作業スペースを確保することで十分に作業可能である。

図 2 5 -24 のアンカーリング概略図には平成 15 年度実証試験の際使用したクレーン付台船のアンカーリング状況も示した。船舶の大きさ、ロープの長さからも今回使用した作業船の作業性の高さが想像できる。

但し259ページの にて示したように、船舶が小型になるに従い、うねりによる 動揺の影響が大きくなる。作業中の動揺に注意を払う必要がある。

(5) 堆積物の状況

泥土の堆積は図24-10に示した概略図に示したように、表層に泥土が薄く堆積している状態が多く、その下には砂礫と泥土が混合している。

また混在物として、ビニールゴミ、海藻が確認された(写真2530参照)。

2.6. 仮設工事工程

浚渫した土砂を陸上に設けた水処理ヤードまで移送するために、海底および陸上部に仮設の配管工事を実施した。ここではその仮設配管の布設・撤去の工事について記述するものとする。

なお使用した配管、配管の敷設、撤去方法は平成 15 年度実証試験の際と同様である。

2.6.1. 仮設配管仕様

仮設配管の仕様は表2-6-1の通り。

表 2 6 -1 仮設配管仕様

仮 設	配 管 仕 様	備考
管径	(呼称)150mm (6インチ)	
材質	PVC製	軟質PVC製の管を硬質PVCの補強 コードにて補強
1本当りの長さ	20m	
重量	約140kg/本	重量にはフランジ重量含む
特費	耐圧性能 フレキシブル性	

2.6.2. 仮設配管ルート及び配管延長

仮設配管のルートの概略は図261の通りである。

海中部は浚渫地点 St. Aから St. Bを通り爪白海岸に流れ込む井出口川河口まで、障害物を避けながら布設した。また、陸上部は井出口川河口から水処理ヤードまで、井出口川沿いに布設した。なお途中の国道 321 号線は道路下部の暗渠内(コンクリートカルバート)に布設し横断を実施した。

なお、配管の総延長は、600m (陸上部:160m、海中部:440m)であった。

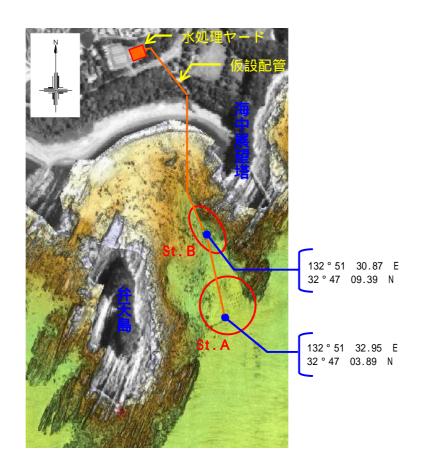


写真2-6-1 仮設配管ルート概略図

2.6.3. 配管布設・撤去方法

陸上部

仮設配管は、25 t 吊のレッカーとクレーン付トラックを用い布設及び撤去を行った。

なお海岸部は重機類の進入が困難であったため、作業員による人力作業により配管作業を実施した。

また、国道 321 号線の横断部は、あらかじめ呼び込み用のワイヤーを暗渠内に通し、ワイヤーの片側に配管を固縛、その逆端をレッカーにて引き込む方法により配管の布設を実施した。

海中部

仮設配管は、120 t 吊クレーン付台船及び、揚錨船を用い潜水士にて水中布設を実施した。台船の作業可能な水深ではクレーンを使用し、それ以浅は揚錨船を使用した。

配管の布設ルートは、あらかじめ潜水士によりサンゴ等の障害物の有無を確認し、 障害物があるルートを避けるよう配慮している。なお、配管は自重(管内満水)に よる自然着底方式により海底面に布設した。

また配管の撤去は、クレーンにて配管を回収した。浅海部は、クレーンにて配管

を沖へ引出しながら回収する方法とした。

120 t 吊クレーン付台船による仮設配管の布設および撤去イメージを図 2 5 2 に示す。

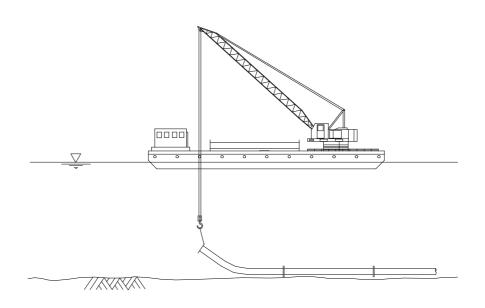


図252 仮設配管の布設イメージ

2.6.4. 仮設配管の布設・撤去状況写真

陸上部における仮設配管の布設及び撤去状況を写真261~写真266に示す。

写真 2-6-1 仮設配管敷設

写真262 作業船舶

写真 2 6 3 仮設配管敷設状況

写真 2 6 4 仮設配管布設状況

写真265 仮設配管敷設状況(陸上部)

写真266 仮設配管道路横断部

2.6.5. 仮設配管の布設・撤去状況

布設・撤去状況

仮設配管の布設・撤去は、海象の影響を受けること無く順調に作業を終えた。

仮設配管の敷設および撤去は、爪白海岸は海浜部及び浅海部にてクレーン等の重機類が近づくことは困難であったものの、浅海部は揚錨船を使用し、また海浜部は 作業員による人力により布設・撤去を実施した。

布設には、陸上部にて 0.5 日、海中部にて 1.0 日程度の時間を要した。 撤去には、海中部が 0.5 日、陸上部にて 0.5 日程度の時間を要した。

浚渫中の状況

浚渫作業中、仮設配管は漏洩等の発生は生じることなく、順調に浚渫排水を陸上の水処理ヤードへ移送することが出来た。

仮設配管は、自重により海底に着底している状況であり、埋設、アンカー等による固定を施していない。そのことにより荒天時の波浪の影響による配管の移動・破損が懸念された。本試験期間中に荒天による配管への影響が予想される場合には配管を撤去、避難する対策を計画した。幸い今回の試験期間中は、荒天に見舞われる事は無かった。

2.7. まとめ

2.7.1. 結論

浚渫試験の結果より以下の事項が明らかとなった。

弁天島東側海底は礫を中心とした堆積物の上に 5cm~15cm 程度で泥土が堆積している。

従来型(ラッパ形状)とジェット併用 型(現位置分級)の吸込み方法が効率、安定性から有効である。

クレーン機能を有した小型作業船によって十分作業可能であり、当該地点の 作業には適している。

浚渫作業により問題となる濁りは発生しない。

2.7.2. 課題点

浚渫試験の結果より以下の課題点が抽出された。

潜水士の技量が作業効率に大きく影響する為、高効率のポンプ浚渫には熟練 した潜水士による作業が必要である。

当該地点のように、極薄層の泥土堆積または砂・礫と泥土が混合している場合の浚渫には、ジェット併用 型つまり現位置分級浚渫が有効であり、技術の確立が必要である。

3. 水処理試験

3.1. 試験目的

大量に排出される浚渫排水を効率よく水処理し、浚渫土砂を運搬、処分若しく は有効利用することは、今後堆積土砂の除去を事業化するに当り重要な課題とな る。

平成 15 年度実証試験の結果より浚渫対象とする土砂は、シルト、粘土といった 微細な粒子にて構成されており、これらの土粒子によって懸濁した浚渫排水は、 凝集剤等を用いることにより、連続的に凝集沈殿処理できることが確認された。

しかし凝集沈殿処理にて濃縮され、スラリー状になった浚渫土砂の排出方法、 または排出した浚渫土砂の運搬、脱水、処分、若しくは有効利用の方法など、事 業化に向け、検討すべき問題がある。

よって水処理試験では事業化に向け、浚渫排水の処理、土砂処分に係わる一連 の作業能力、作業状況等のデータの収集、分析、検討を目的とした。

なお、土砂処分方法の検討の一環として発生した浚渫土の有効利用の検討を実施した。

また弁天島東側と諸条件の異なる、三崎川河口域付近での水処理作業を想定し 船上における水処理の可能性についても検討した。

3.2. 水処理試験フロー

水処理試験の流れを図3-2-1に示す。

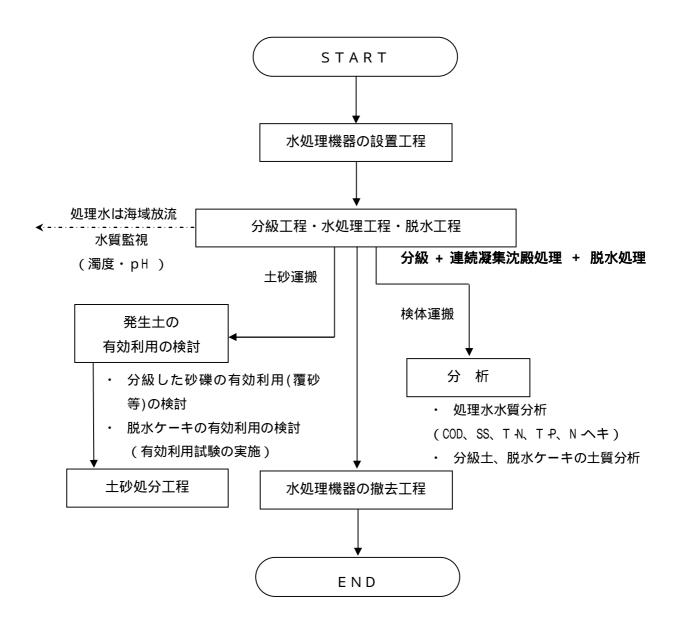
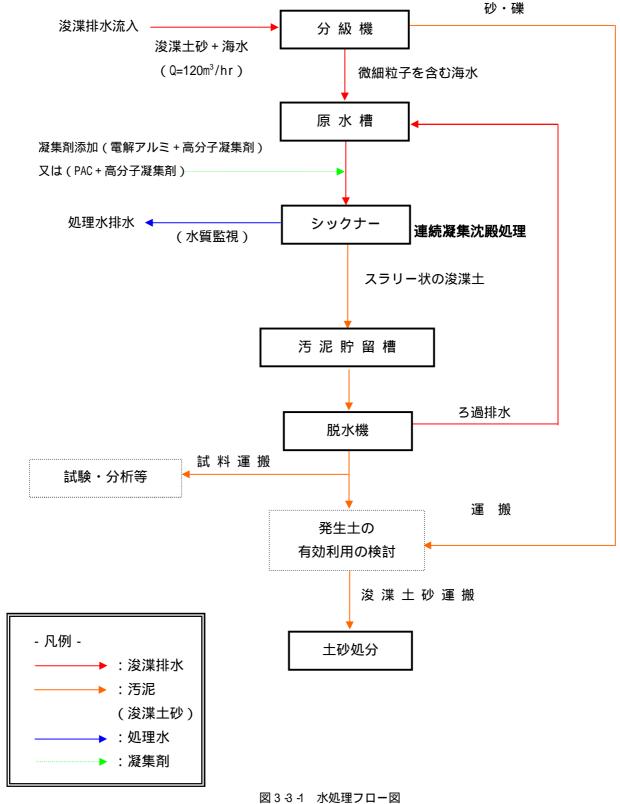



図3-2-1 水処理試験フロー図

3.3. 水処理フロー

浚渫排水の水処理フローを図33.1に示す。なお水処理フローのイメージ図は 図 1 6 2 に示す。

3.4. 機器配置図

水処理機器類の配置図を図34-1に示す。

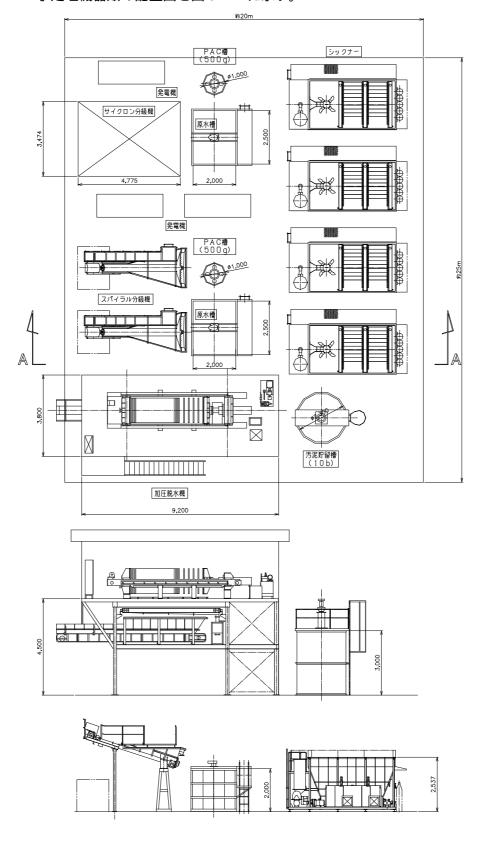


図34-1 水処理機器類配置図

3.5. 水処理機器の選定計画

水処理試験の試験プラントとして、120m³/hr 処理能力の水処理装置を選定した。 経験上、今回実施している潜水士によるポンプ浚渫では、浚渫物の性状、配管長、 揚程等により排水量は異なるが、平均的に 150m³/hr (100m³/hr 弱~200m³/hr 強) である。今回は試験プラント(120m3/hr)の為、排水量を調整し試験を実施した。 以下に、試験プラントの各設備についての選定計画を示す。

【1】設備選定計画

- [1]設備選定計画の概要
 - 〔1〕-1 処理方法機械沈殿・機械脱水方式で行う。
 - [1] 2 運転時間シックナー関係は 6 時間とする。
 - [1]-3 計画条件

1	. 原水量	120	${\rm m}^3/{\rm h}$
	· //\/\/ 	120	/ 11

2 . 原水SS 10,000 mg/\(\tilde{\mu}\) (平均)

3 . 原水pH 8

4. 処理水SS 50 mg/\n"

5 . 処理水pH 6 ~ 9

6. 処理水 放 流

7. スラリー含水率 85 wt%(平均)と仮定。

8. 脱水ケーキ含水率 50 wt % (平均)と仮定。

9. 固形分比重 2.65 とする。

(注)1.実運転における脱水機の稼動時間は原水性状により変動が考えられる。

〔2〕物質収支

〔2〕-1 固形分の乾燥重量

 $120m3/h \times 10000 mg/_{FL}^{UV} \times 10^{4} = 1.200 t/h$

[2] - 2 排出スラリー量

[2]-3 脱水ケーキ量

[3]主要機器の選定

[3] - 1 スパイラル分級機(60m³/h処理とする。)

土粒子の沈降速度は静止状態で、(水 10 ,比重 2.65)

粒径 0.2mmの場合、 21mm/sec 75.6m/h

スパイラル分級機の沈降面積 2.7m²より

流動状態での安全率は 6倍となり、(当社実績)

0.2mm (70メッシュ) の場合の能力は

$$Q = \frac{75.6}{6} \times 2.7 = 34.02 \text{ m}^3/\text{h} > 30 \text{ m}^3/\text{h}$$

よって、分級機は下記のものを2基とする。

スパイラル分級機仕様

寸 法 300 × 3700L

表面積 2.7 m²

動 力 1.5 kW

〔3〕-2 原水槽

滞留時間を 3分とする。

120 m³/h x
$$\frac{3}{60}$$
 = 6.0 m³以上

よって原水槽は下記の槽を 2基とする。

2.0m×2.5m×2.0mH (鋼板製)

〔3〕-3 処理水槽

シックナー機内設置式とする。

[3]-4 PAC注入装置

適正薬注量は近似原水データの実績より 150 mg/kilとする。

使用量の計算

 $120 \text{ m}^3/\text{h} \times 150 \text{ mg/}_{hh}^{yy} \times 10^3 = 18.0 \text{ kg/h}$

PACの液比重を1.2とすると毎時薬注量は

 $18 \text{ kg/h} \div 1.2 = 15.0 \frac{9}{5} / h = 0.25 \frac{9}{5} / min$

従って注入ポンプの能力は 0.25 ¼/min以上とする。

注入ポンプ仕様

定量ポンプ ~ 0.12以 / min×100mH×0.2kW×4台

PAC貯留槽は 500 %が 2 基なので

15 片水/h × 6 h = 90.0 片水/日

1000 片 ÷ 90 片 / 日 = 11.1 日

よって、約 11 日間の貯留となる。

[3]-5 高分子注入装置

適正薬注量は近似原水データの実績より 5 mg/トッッとする。

使用量の計算

 $120 \text{ m}^3/\text{h} \times 5 \text{ mg/}_{FV}^{yy} \times 10^3 = 0.60 \text{ kg/h}$

使用濃度を0.1%溶液(0.001 kg/ポ)とすると毎時薬注量は

 $0.6 \text{ kg/h} \div 0.001 \text{ kg/km} = 600 \text{ kg/h} = 10.0 \text{ kg/min}$

従って注入ポンプの能力は 10 ¼/min以上とする。

注入ポンプ仕様

定量ポンプ ~ 6.0 / min×50mH×0.4kW×4台

高分子溶解槽は 0.6 m³槽が 8 槽なので、

 $4800^{11} + 600^{11} + 600^{11} = 8.0^{11}$

よって、約8時間の貯留となる。

[3]-6 凝集沈殿装置(シックナー)

処理水量: $Q = 120 \text{ m}^3/\text{h}$

沈降速度: V = 4.5 m/h

沈降必要面積: S = Q/V = 120 / 4.5 = 26.67 m²

従って下記のシックナーを 4 基選定する。

シックナー仕様

寸 法 2.3m×5.0m×2.4mH

表面積 9.0 m²

〔3〕-7 脱水機(加圧脱水機)

脱水機のろ過容積は固形分量、スラリー脱水性状及び脱水サイクルにより決定される。

尚、スラリー性状不明の為、脱水試験の結果によっては設備の変動がある 場合が考えられる。

シックナー稼動 6 時間で発生するスラリー量とケーキ量は、

スラリー量 $7.253 \text{ m}3/\text{h} \times 6 \text{ h} = 43.518 \text{ m}^3$

ケーキ量 1.653 m3/h \times 6 h = 9.918 m³

発生したスラリーを下記の脱水機で処理すると

加圧脱水機仕様

ろ過面積 105.0 m²

ろ過容積 1.50 m³

室 数 50 室

台 数 1 台

脱水サイクル 70 分/サイクル (加圧脱水 60 分+開枠排土 10分)とすると

9.918
$$m^3 \div \frac{60 \text{ min}}{70 \text{ min}} \div 1.500 \text{ } m^3/$$
 ታላታሉ = 7.7 h

1日約 8 時間の稼動となる。

[3]-8 汚泥貯留槽

汚泥貯留槽は、脱水機の残業時間分以上の貯留能力のものが必要となる。

$$7.253 \text{ m}3/\text{h} \times (8 - 6) \text{ h} = 14.506 \text{ m}^3$$

従って汚泥貯留槽は下記の槽を選定する。

汚泥貯留槽仕様

寸 法 3.5m×3.5mH

容量 30 m³

付属品 5.5 kW撹拌機

台 数 1 基

【2】機器一覧表

		6 0 H	z 200V関係	
番号	機器名称	台 数	機器仕様	動力(kW)
4	スパイラル分級機	0	鋼板製	1.5
1	人八1 ブルガ級機	2	300 × 3700L	
2	サイクロン分級機	1	振動篩い付	71
3	原水槽	2	(鋼板製) 2.0m×2.5m×2.0mH	4.4
	がひい日		2.2kW撹拌機	7.7
4	処理水槽	4	(鋼板製)	
			水中サンドポンプ(NKZ A 3)	
5	原水ポンプ	4	0.5m ³ /min×10mH	8.8
	5 4 6 -12 5 -12		ダイヤフラム定量ポンプ	0.8
6	P A C ポンプ	4	0.12นี้/min×100mH	
7	高分子ポンプ	4	ダイヤフラム定量ポンプ	1.6
,	同のサルノノ		6.0 หม้/min × 50mH	1.0
8	PAC貯留槽	2	0.5m ³ ・ポリエチレン製	
		_		
9	 高分子溶解槽	8	0.6m ³ ・鋼板製	1.6
			0.2kW撹拌機	
10	シックナー	4	鋼板製 集泥装置 1.5kW	6
			$2.3 \text{m} \times 5.0 \text{m} \times 2.4 \text{mH}$	
11	 逆洗ポンプ	4	タービンポンプ	6
			0.22m ³ /min×22mH	
12	 計装用コンプレッサー	4	圧力開閉式 (SP10D 4T)	1.6
			42 ให้ /min × 0.78 ~ 0.97MPa	
13	 送泥ポンプ	4	スラリーポンプ	6
			0.1m ³ /min×10mH	
 	電磁流量計	4	積算計・記録計	
	- S PARTITION IN		80A	

番号	機器名称	台 数	機器仕様	動力(kW)	
4	カロ CT Rヴュレ t鉄	4	鋼板製	0.4	
1	加圧脱水機	1	ろ過容積 1.5m³・ろ過面積 105.0m²	0.4	
2	油圧ポンプユニット	1	圧力 14.7MPa タンク容量 250リットル	5.5	
	加工パグラユニット	'		0.0	
3	高圧スラリーポンプ	1	スラリーポンプ	18.5	
			0.5m ³ /min×50mH		
4	ろ布洗浄ポンプ	1		2.2	
			3.9MPa		
5	ケーキ引出しコンベア	1	600mmW × 7000mmL	2.2	
			1-1		
6	ろ液受装置	1	鋼板製	0.2	
			モーター 0.2kW		
7	7 脱水機架台		鉄骨鋼板製 3.8mW×9.2mL		
			脚・スカート プレバブ 3.6m×9.0m×2.7mH		
8	プレス建屋 1		ブルル 3.6m×9.0m×2.7mn 蛍光灯0.04kW×6灯	0.24	
			30m ³ 鋼板製 3.5m×3.5mH		
9	汚泥貯留槽	1	5.5kW撹拌機	5.5	
10	脱水機操作盤	1			
11					
10					
12					
13					
14					
脱水機関係 動力合計					
1			200V関係 動力合計	93.64 kW	

3.6. 水処理試験状況

写真 3 6 1~写真 3 6 53 に水処理試験状況を示す。なお写真 3 6 42~写真 3 6 53 は水処理試験のうちの有効利用試験の状況である。

写真 3 6 -1 着工前状況

写真 3 6 2 基礎鉄板設置状況

写真363 水処理装置搬入状況

写真364 水処理装置設置状況

写真365 水処理設備設置状況

写真366 水処理設備設置状況

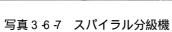


写真368 スパイラル分級機



写真369 処理状況(スパイラル分級機)

写真36-10 処理状況(スパイラル分級機)

写真 3 6 -11 分級状況

写真36-12 サイクロン分級機

写真36-13 サイクロン部

写真 3 6 -14 分級状況

写真 3 6 -15 分級状況

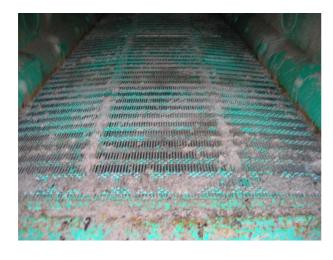


写真 3-6-16 振動振いメッシュ

写真 3-6-17 分級状況

写真 3-6-18 原水槽

写真 3 6 -19 原水槽運転状況

写真36-20 シックナー

写真36-21 シックナー処理状況

写真36-22 シックナー処理状況

写真 3 6 -23 処理水排水状況

写真 3 6 -24 汚泥貯留槽

写真36-25 汚泥(スラリー)貯留状況

写真36-26 圧入状況(脱水機)

写真36-27 圧入状況(脱水機)

写真36-28 開削状況(脱水機)

写真36-29 開削状況(脱水機)

写真3630 脱水機全景

写真3631 脱水ケーキ積込

写真3632 脱水ケーキ積込

写真36-33 脱水ケーキ

写真3634 発生土の埋立状況

写真36-35 発生土の埋立状況

写真 3 6 36 原 水 (分級後の浚渫排水)

写真 3 6 -37 処理水

写真36-38 汚泥(濃縮スラリー)

写真 3 6 -39 浚渫時混入物

写真 3 6 40 高速吸引車 (水処理機器清掃時)

写真 3 6 41 水処理機器清掃状況

写真3642 有効利用試験試料(固化処理) (試料:浚渫土)

写真 3 ·6 ·44 一軸圧縮試験 (固化処理)

写真 3 6 45 気泡発生装置 (発泡固化処理試験)

写真 3 6 46 エアーモルタル (浚渫土添加量: 0%)

写真 3 6 47 発泡固化処理 (エアーモルタル型枠充填)

写真3648 一軸圧縮試験

(検体:発泡固化処理)

写真3649 密度試験

写真 3 6 50 コーン指数試験供試体 (試料:脱水ケーキ)

写真3651 コーン指数試験状況

写真 3 6 52 塩化物含有率測定 (試料:脱水ケーキ)

写真 3 6 53 固化処理試験試料

3.7. 試験結果および考察

水処理試験中において収集された試験結果および水処理状況等を以下に示す。

3.7.1. 分級工程

分級とは粒状材料を粒径に従い細粗に分けることをいい、本工程では浚渫土に 含まれる粗粒分と細粒分に分け細粒分を含んだ濁水は次工程の水処理工程へと送 られる。また粗粒分は土砂処分工程において適切に処分した。

本工程では仕組みの異なる2つの分級機を用いそれぞれの分級効果を確認した。 使用した分級機はスパイラル分級機(写真367~写真36-11参照)と振動振る い付きサイクロン分級機(写真36-12~写真36-17参照)である。

(1) スパイラル分級機の分級状況

スパイラル分級機は沈降分離の原理を利用したもので、沈降速度が速い粗粒分をスパイラル状のスクリューコンベアにて掻揚げる構造になっている。細粒分は懸濁水として次工程へ送られる。写真371は分級後、懸濁水が堰を越流する状況である。浚渫試験にて明らかになったように、浚渫土中には土粒子のみならず、ビニールゴミ、海藻等の混在物が含まれており、比重が軽く即座に沈降しないこれらの混在物は懸濁水とともに次工程に送られ、ポンプ等に詰まるなどの弊害を起こした。写真372はポンプに詰まった混在物である。

また分級された粗粒分はきれいな砂礫であり分級状況は良好である。

写真3-7-1 越流状況 (細粒分を含んだ懸濁水)

写真372 ポンプに詰まった混在物

(2) サイクロン分級機の分級状況

サイクロン分級機は液体サイクロンの原理用いて分級するものである。液体サイクロンとは固形粒子を含むスラリーをポンプによってコーン(サイクロン)に圧入すると、液中の粒子は強力な遠心力によって、粗い粒子ほど強くコーン内の円筒部の周壁に押し付けられる。さらに回転しながらコーン円錐によって下降し、下部から外部に排出されます。その際、微粒子には遠心力の作用が弱いので、懸濁液とともにうずまき状に上昇して、上部より排出される。これによって分級が行われる原理である。

また今回用いたサイクロン分級機には前処理に振動振るいが装備されている為、(1)のスパイラル分級機にて問題となった、ビニールゴミ、海藻などの混在物、または粗礫などの大型の粒子を事前に除去できた。振動振るいのメッシュは5mmメッシュを使用した(写真373参照)。混在物等が除去できたことにより、次工程に影響はなく順調さに作業が進んだ。

写真3545は分級された粗粒分である。分級の原理上、粗粒分に細粒分が付着した状態で分離される為、分級された粗粒分に混じった細粒分が目立つ。

写真373 振動振るい部のメッシュ(5mm)

(3) 分級土の粒度分析結果

スパイラル分級機およびサイクロン分級機によって分級された土を試料として、その粒度組成を分析した。

試料の採取は分級された粗粒分のうち目視にて粒度の異なる部分ごとに採取した。スパイラル分級機の試料は3検体、サイクロン分級機の試料は2検体である。

分析結果を表 3 - 7 - 1 に示し、粒径加積曲線を図 3 - 6 - 1 に示す。またそれぞれの試料の写真を写真 3 - 7 - 4、写真 3 - 7 - 5 に粒度組成を表したグラフを図 3 - 7 - 2、図 3 - 7 - 3 に示す。

試料名	粗礫分 (%)	中礫分 (%)	細礫分 (%)	粗砂分 (%)	中砂分 (%)	細砂分 (%)	シルト分・粘土分 (%)
スパイラル	0.0	0.0	8.0	10.6	30.4	42.1	8.9
スパイラル	0.0	44.3	25.6	14.9	9.9	3.5	1.8
スパイラル	53.4	45.8	0.0	0.1	0.4	0.2	0.1
サイクロン	0.0	0.0	16.8	15.4	13.2	13.1	41.5
サイクロン	0.0	68.4	4.6	0.4	1.3	5.2	20.1

表 3-7-1 粗粒分の粒度組成

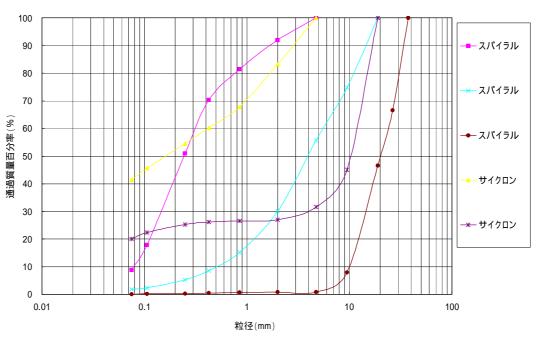


図3-7-1 粗粒分の粒径加積曲線

写真374 分級後の粗粒分(スパイラル分級機)

【試料名:左から、スパイラル 、スパイラル 、スパイラル 】

写真375 分級後の粗粒分(サイクロン分級機)

【試料名:左から、サイクロン 、サイクロン 】

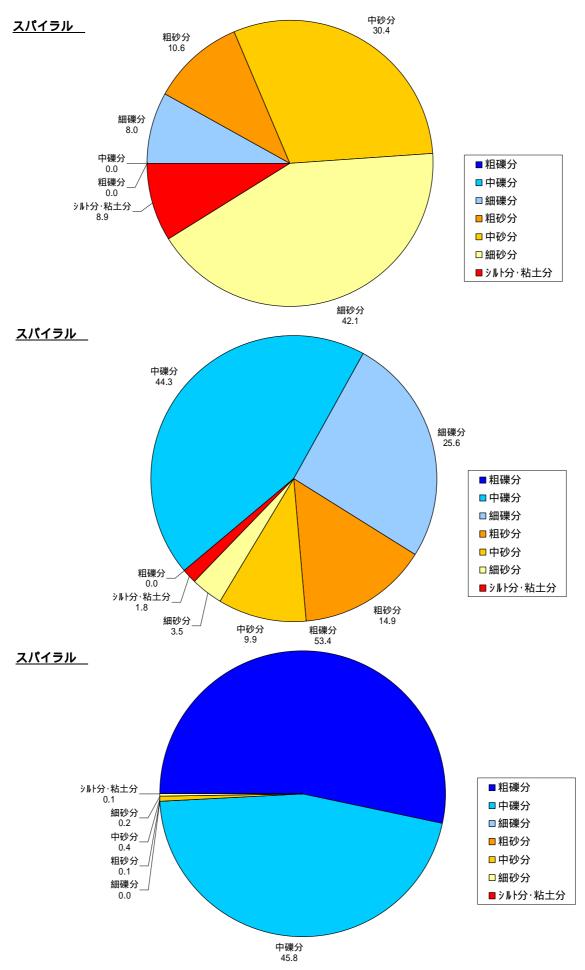
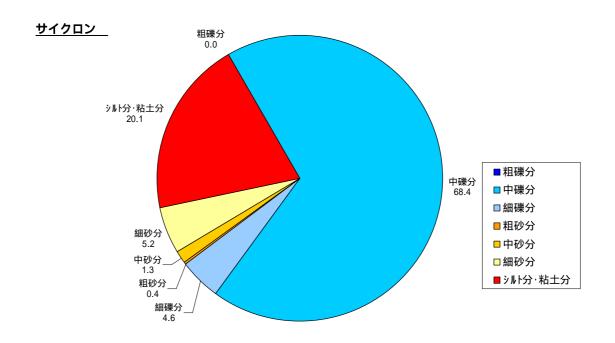



図372 粗粒分の粒度組成(スパイラル分級機)

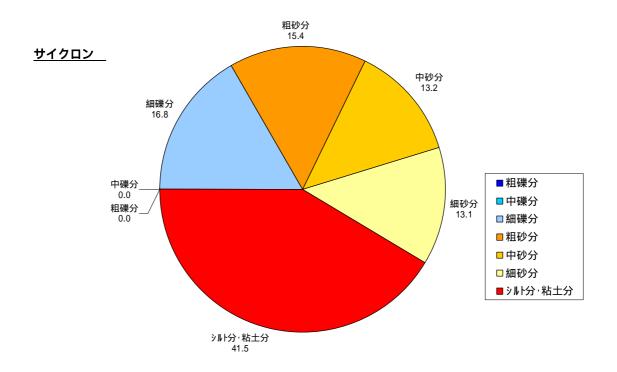


図373 粗粒分の粒度組成(サイクロン分級機)

3.7.2. 水処理工程

水処理工程では、分級にて発生した懸濁水を凝集沈殿処理する。今回使用した 凝集剤は PAC と高分子凝集剤である。PAC と高分子凝集剤による凝集沈殿処理に よる有効性は平成 15 年度実証試験にて明らかにした。

なおシックナーにて凝集沈殿した細粒分(以下、濃縮スラリー)は、次工程の 脱水工程へと連続的に送られる。また処理水も連続的に排水される。

排水の水質監視は、1日に1回原水と処理水を採水し現地にてpH、濁度について実施した。またその際採水した試料を分析室に送り COD、SS、TA、TP、n-ヘキサン抽出物質について分析を実施した。

以下に水処理状況および水質監視結果、水質分析結果について示す。

また平成 15 年度実証試験の際、PAC と高分子凝集剤の凝集性能以上に良好な凝集結果を示した、電解アルミニウムと高分子凝集剤による水処理を実施した。その際の水質分析結果についても示す。

(1) 水質監視結果(現地)

現地の水質監視結果を表372および図374、図375に示す。

3月16日~3月21日までの運転期間中にPHは6.96~7.94の間にあり問題になる状況は無かった。また濁度は3月19日に濁度30.2と他の日に比べ高い値を示した為、原因を調査したところ、凝集剤(PAC)タンクから注入ホースが抜けていた。速やかに注入ホースを復旧させ、濁度を抑えた。

採水日	時間	試料名	濁度	рН	水温
3月16日	15:40	原水	1000	8.12	16.8
3月18日	15:30	原水	1000	8.05	16.6
3月19日	11:07	原水	1000	8.09	15.5
3月20日	13:40	原水	1000	8.07	15.0
3月21日(1)	15:45	原水	1000	8.07	17.1
3月21日(2)	15:45	原水	1000	8.07	17.1

表 3 7 2 水質監視結果 (現地)

採水日	時間	試料名	濁度	рН	水温
3月16日	15:40	処理水	13.8	7.62	17.2
3月18日	15:30	処理水	3.6	7.49	16.2
3月19日	14:35	処理水	30.2	7.57	16.3
3月20日	13:40	処理水	4.5	7.77	16.1
3月21日(1)	15:45	処理水	16.7	7.94	16.7
3月21日(2)	15:55	処理水	9.6	6.96	16.6

図374 水質監視結果(pH)

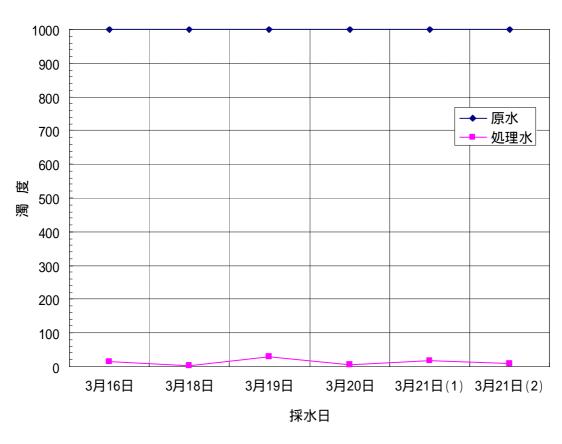


図3-7-5 水質監視結果(濁度)

(2) 水質分析結果

15:45

原水

3月21日(2)

現地にて水質監視した際、採水し試料を分析室に送り水質分析を実施した。 分析結果を表373および図374、図375に示す。

3月19日のSSの値(91mg/I)は現地水質監視結果に示した原因と同様である。

COD、T-N、TP、N ヘキサン抽出物質のデータに問題とするものは無い。

5300

4.49

< 2.5

1.15

n-ヘキサン COD_{Mn} T-N T-P SS 採水日 時間 試料名 抽出物質 mg/L mg/L mg/L mg/L mg/L 3月16日 15:40 原水 390 14000 34.3 3.21 < 2.5 3月18日 15:30 原水 120 4700 9.77 < 2.5 1.88 3月19日 11:07 原水 120 3400 9.52 1.88 < 2.5 3月20日 13:40 630 6900 2.77 < 2.5 原水 13.1 3月21日(1) 15:45 原水 100 5300 4.49 1.15 < 2.5

100

表 3 7 3 水質分析結果

採水日	時間	試料名	COD_{Mn}	SS	T-N	T-P	n-ヘキサン 抽出物質
			mg/L	mg/L	mg/L	mg/L	mg/L
3月16日	15:40	処理水	6.9	49	1.43	0.048	< 2.5
3月18日	15:30	処理水	2.7	16	0.11	0.021	< 2.5
3月19日	14:35	処理水	5.4	91	0.70	0.061	< 2.5
3月20日	13:40	処理水	2.3	18	0.60	0.019	< 2.5
3月21日(1)	15:45	処理水	2.5	33	0.29	0.078	< 2.5
3月21日(2)	16:55	処理水	2.5	30	0.66	0.028	< 2.5

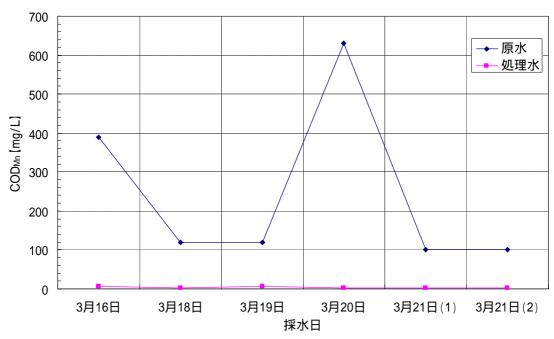
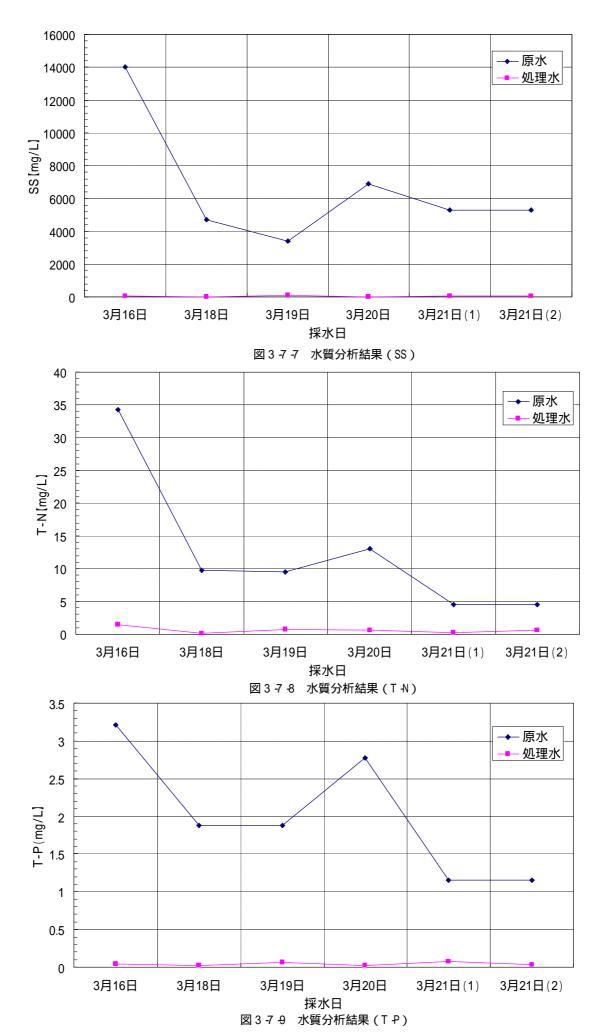



図 3-7-6 水質分析結果 (COD)

3-30

(3) 電解アルミニウムによる水処理

電解アルミニウムと高分子凝集剤による処理水の分析結果を示す。またそのときの原水および PAC と高分子凝集剤による処理水の分析結果を示し比較する。水質の分析項目は COD、SS、T N、T P である。

電解アルミニウムおよび高分子凝集剤は原水槽からシックナーへの送水の間に注入する(図331参照)。写真376は電解アルミニウムを発生させる電解槽および直流電源装置である。電解槽の中にはアルミニウム電極(写真377)が写真378のように設置されている。

水質分析結果を表 3 7 4 および図 3 7 -10、図 3 7 -11、図 3 7 -12、図 3 7 -13 に示す。

水質分析結果より、電解アルミニウムと高分子凝集剤による処理と、PAC と高分子凝集剤による処理による処理水質は、ほぼ同様な値であった。写真 3 6 9 には電解アルミニウムによる処理水と原水を示した。

写真376 電解槽と直流電源

写真377 アルミニウム電極

写真378 電極設置状況

写真379 処理水と原水

表 3 -7 -4 分析結果

試 料 名		COD_{Mn}	SS	T-N	T-P
		mg/L	mg/L	mg/L	mg/L
原水原水		100	5300	4.49	1.15
処理水(PAC+高分子)	処理水	2.5	33	0.29	0.078
処理水(電解アルミニウム+高分子) 処理		2.5	30	0.66	0.028

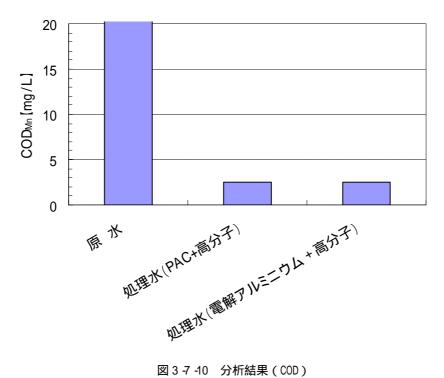


図 3 -7 -10 分析結果 (COD)

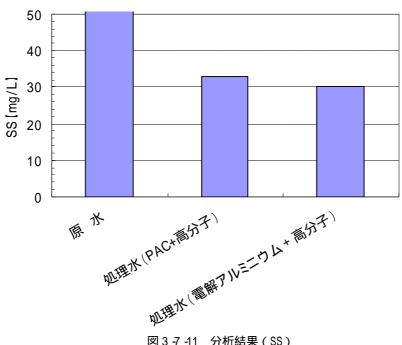


図3-7-11 分析結果(SS)

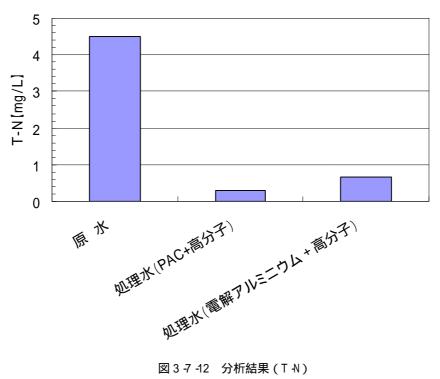


図3-7-12 分析結果(T-N)

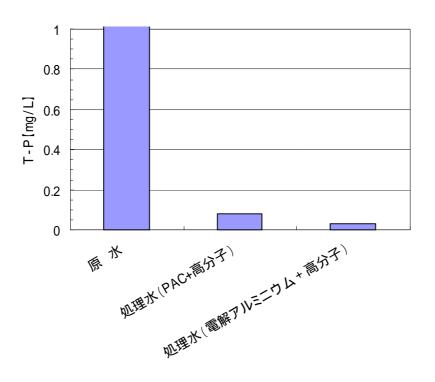


図3-7-13 分析結果(T₽)

3.7.3. 脱水工程

脱水工程では、水処理工程によって凝集沈殿した濃縮スラリー(写真 3 6 38 参照)を加圧脱水機(写真 3 6 26~写真 3 6 33 参照)により脱水する。濃縮スラリーは数百%以上の含水比である。脱水により濃縮スラリーの水分はろ過され、含水比50%程度の脱水ケーキとなる。

以下に脱水工程によって確認された事項について記す。

(1) 濃縮スラリーの性状

濃縮スラリーを採水しその含水比を分析した。表 3 7 5 は濃縮スラリーの 含水比を示す。

試料名	含水比		
	%		
スラリー	376		
スラリー	417		
スラリー	709		

表3.7.5 濃縮スラリーの含水比

(2) 脱水ケーキの性状

脱水ケーキを採泥しその含水比を分析した。表376は脱水ケーキの含水 比を示す。

試料名	含水比 %
脱水ケーキ	47.1
脱水ケーキ	60.3

表376 脱水ケーキの含水比

(3) 脱水状況

脱水状況は良好であり、脱水助剤として用意した消石灰を添加する必要は 無かった。これは浚渫した泥土が無機性ある為と考えたれる。

1回の脱水のサイクルタイムは約90分であり、1回の脱水により2tダンプトラック一杯分のケーキが脱水される。

3.7.4. 土砂処分工程

土砂処分工程では、分級工程によって分級された粗粒分および脱水工程によって発生した脱水ケーキを土佐清水市残土処分場にて埋立処分するものである。 写真3634および写真3635は残土処分場における土砂処分状況である。 処分する脱水ケーキのコーン指数は259.9kN/m²であり建設発生土利用技術マニュアルによる土質区分は第4種b発生土である(3.7.5.有効利用試験参照)。

3.7.5. 有効利用試験結果

有効利用試験では脱水ケーキの有効利用の検討する為の試験である。試験内容は、1.脱水ケーキの固化処理試験、2.脱水ケーキの発泡固化処理試験、3.脱水ケーキのコーン貫入試験、4脱水ケーキの塩化物測定である。1.の脱水ケーキ固化処理試験は、分級工程によって発生した砂礫を骨材として使用した場合と、購入砂(砕砂)を骨材とした場合について比較した。

試験結果を以下に示す。

試験結果表

4	_	7	1	ъπ	тш
	占	111	۲.1	//L	理

<u> 1. 固化処理</u>					
試料	固化材		一軸圧縮強さ(KN/㎡)		
百八个子	添加量	種類	材齢7日	材齢28日	
脱水ケーキ	脱水ケーキ + 300 発生砂利	普通ポルトランド セメント (N)	3967	4303	
•		セメント系固化材 (TL-4)	2629	3895	
脱水ケーキ	脱水ケーキ + 300 砕砂	普通ポルトランド セメント (N)	3388	4157	
•		セメント系固化材 (TL - 4)	2072	3474	

2. 発泡固化処理

脱水ケーキ 置換率	一軸圧縮強さ(KN/㎡)			
成小ゲーヤ 直接卒	材齢7日	材齢28日		
0	4329	6054		
10	4569	6388		
30	8538	12433		
50	3853	6053		

3. 脱水ケーキの土質判定及び塩分物イオン(Cl) 濃度

試料	土質区分	塩化物イオン(CI ⁻) 濃度 (%)	
脱水ケーキ	第4b種発生土	1.16	

配合試験結果

1.試験概要

(1) 工事(調査)名

平成16年度竜串地区自然再生推進計画調查(泥土処理実証試験)業務

(2) 実施場所

(株)中研コンサルタント

- (3) 試料土(現状土)
 - 1)試験に用いた試料の試験結果を表 1に示す。

現状土			表 - 1
試 料	含水比	湿潤密度	乾燥密度
በ-10 ጥተ	(%)	(g/cm³)	(g/cm³)
脱水ケーキ	60.3	1.550	0.967
発生砂利	1.8	1.928	1.894
砕砂	1.6	1.724	1.697

2. 固化処理配合試験

- (1) 試料土(混合土):脱水ケーキに発生砂利及び砕砂を質量比1:1で混合し試料土とした。
 - 1)試験に用いた試料の物理試験結果を表 2に示す。

混合試料			表 - 2
試 料	含水比	湿潤密度	乾燥密度
በሁ ጥተ	(%)	(g/cm³)	(g/cm³)
脱水ケーキ + 発生砂利	24.7	1.972	1.581
脱水ケーキ + 砕砂	24.9	1.925	1.541

(2) 使用材料

1)試験に用いた材料の試験結果を表 - 3に示す。

表 - 3

使用材料	種類	製造者	
田(V++/-b-/-).	普通ポルトランドセメント(N)	住友大阪セメント㈱製	
固化材(セメント) 	タフロック4型(TL - 4)	住友大阪セメント㈱製	

- (3) 固 化 材 添 加 方 法 = 粉体添加
- (4) 配合の種類及び配合表

1)試料土1 当たりの配合及び試し練り 1.5 当たりの単位量を表 - 4に示す。

表 - 4

				衣 - 4	
	試料土1	当たり	試し練り1.5 当たり		
試料	(k g	(kg/)		.5)	
	固化材	試料土	固化材	試料土	
脱水ケーキ + 発生砂利	300	1972	450	2958	
脱水ケーキ + 砕砂	300	1925	450	2888	

(5)試験の方法

脱水ケーキに発生砂利及び砕砂を質量比1:1で混合し、固化材300kg/m を粉体添加、ソイルミキサで10分 混合後、 5×10 cmモ - ルドに成形、脱型後、室内で密封養生、材齢7日,28日で一軸圧縮試験を実施した

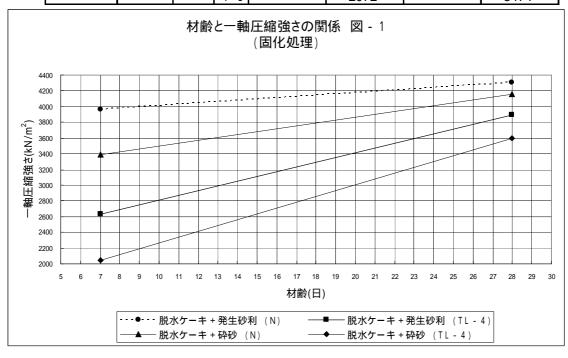
1) 含 水 比 試 験 : JIS A 1203(土の含水比試験方法)

2) 湿 潤 密 度 試 験 : JGST191 (土の湿潤密度試験)

3) 供 試 体 作 製 : JGST821 (安定処理土の締固めをしない供試体の作製方法)

4) 強 さ 試 験 : JIS A 1216(土の一軸圧縮試験方法)

5) 養生方法及び期間 : 密封被覆,養生温度=20.0 ,養生期間=7日,28日


(6)試験結果

1) 一軸圧縮強さの試験結果を表 - 5に示す。

2) 材齢と一軸圧縮強さの関係を図 - 1に示す。

表 - 5

	固化	材		材搬	₹7日	材齢28日	
試料	添加量	種類		供試体質量	一軸圧縮強さ	供試体質量	一軸圧縮強さ
	(kg/)	作里天只		(g)	(KN/m^2)	(g)	(KN/m^2)
			1	403	4035	404	4238
		(N)	2	403	4060	403	4065
		(14)	3	403	3805	403	4605
脱水ケーキ	300		平均	ı	3967	ı	4303
発生砂利	300		1	400	2603	398	3810
		(TL-4)	2	396	2787	398	3933
			3	398	2496	399	3943
			平均	-	2629	-	3895
		(N)	1	391	3484	391	4391
			2	391	3454	392	4126
BY I. (3	392	3225	391	3953
脱水ケーキ +	300		平均	-	3388	-	4157
砕砂	300		1	387	2048	386	3597
		(TL-4)	2	391	2099	390	3505
		(12 4)	3	389	2068	388	3321
			平均	-	2072	-	3474

2. 発泡固化処理配合試験

(1) 基準とするエアミルクと、エアミルクの容積10,30,50%を脱水ケーキに置換え一軸圧縮強さを確認する。 基準となるエアミルクは、一般に土質材料(盛土)では一軸圧縮強度が1000kN/m²程度であるが、今回の 目的が土質材料でなく、浸水させることを考慮し4000kN/m²以上を目標とした。

配合は、日本道路公団: 気泡混合軽量盛土の暫定配合以外の配合となり、別紙資料のグラフから読みとれる範囲内で、フロー値180mmが確保できる配合を採用。よって空気量を45%、水セメント比を60%とした。

(2) 使用材料

1)試験に用いた材料の試験結果を表 - 6に示す。

表 - 6

			12 - 0
使用材料	種類	密度	製造者
セメント	高炉セメントB種	3.04	住友大阪セメント㈱製
細骨材	脱水ケーキ	2.67	土粒子の密度
練混水	上水道水	1.0	
起泡剤	スミシールドA(S-1)	1.0	住友大阪セメント㈱製

(3) 配合の種類及び配合表

1)1 当たりの配合を表 - 7 - 1に、試し練り 25 当たりの単位量を表 - 7 - 2に示す。

表 - 7 - 1

							衣 - / -
配合No.	脱水ケーキ	W/C	単位量 (kg/m³)				
置换率(%		(%)	セメント	脱水ケーキ	混練水	起泡剤	希釈水
1	0	59.9%	592	0	336	0.75	18.02
2	10	60.0%	533	267	303	0.67	16.20
3	30	60.0%	415	801	236	0.52	12.58
4	50	59.9%	296	1335	168	0.38	9.01

注:表中の気泡材の希釈倍率:25倍,発泡倍率:25倍(メーカー指定)とする。

表 - 7 - 2

							衣 - / - /	
配合No.	脱水ケーキ	W/C		単位量 (g/25)				
ALDINO.	置換率(%)	(%)	セメント	脱水ケーキ	混練水	起泡剤	希釈水	
1	0	59.9%	14800	0	8400	469		
2	10	60.0%	13325	6675	7575	422		
3	30	60.0%	10375	20025	5900	328		
4	50	59.9%	7400	33375	4200	23	35	

(4) 試験項目及び方法

表 - 8に試験項目及び方法を示す。

表 - 8

区分	試験項目	規格	備考
	単位容積質量試験		
エアミルク (エアモルタル)	フロー試験	JHS 313	シリンダー法
	空気量試験	JHS 313	消泡法
	一軸圧縮試験	JIS A 1216	

単位容積質量試験(生比重)

容積既知(2076cc)の円筒形容器にエアミルクを振動を与えながら充填し、表面を平滑に均す。 測定した質量を容積で除して単位容積質量(生比重)を求めた。

フロー試験(JHS 313-1999)

硬質プラスチック製の水平板上に置いた内径80mm、高さ80mmの円筒容器(シリンダー)内に、エアミルクを充填してその表面を平滑に均した後、静かにそのシリンダーを引き上げて、その広がりをノギスで測定する。フロー値は、最大と認められる方向とその直角方向の径を測定値とした。

空気量試験(JHS 313-1999)

500mlのメスシリンダー内に、計り取ったエアミルク200ccと水200ccを入れ、攪拌したのち静置する。さらに計り取った100ccのアルコールを徐々にメスシリンダー内に注ぎ込み、攪拌により分離したエアを完全に消泡させる。その後、メスシリンダーの目盛りを読みとり、以下の計算式により空気量を算出する。

·空気量(%) = {(500cc - メスシリンダーの読み) / 200cc} × 100

一軸圧縮試験(JIS A 1216-1998)

練り上がったエアミルクを内径10cm、高さ20cmの円筒形モールド内に振動を与えながら充填し、供試体を作製した。作製した供試体は、硬化後、端面を平滑に成形し、20±3 の恒温室内にて所定材齢まで密封養生し、一軸圧縮強さを材齢7日及び28日で実施した。

(5) 試験フロー

室内試験練りは図 - 2に示したフローに従い行った。

なお、気泡群の作製方法は、プレフォーム方式(事前発泡方式)とし、図 - 3に示した気泡群作製装置により気泡群を作製した。

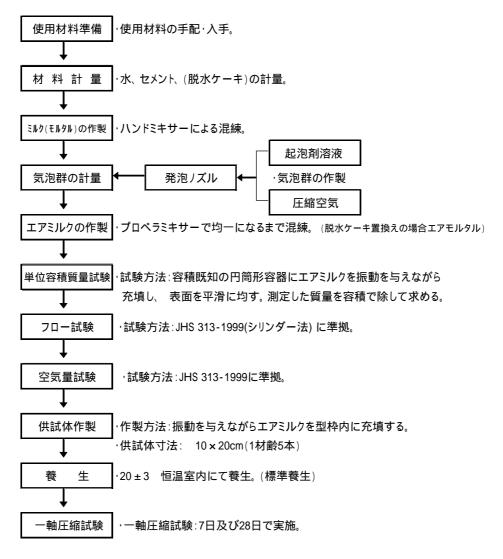


図 - 2 試験練りフロー

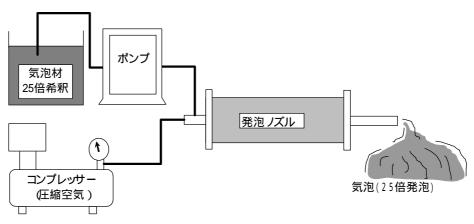


図 - 3 気泡郡作製装置

(6) 試験結果

1).フレッシュエアミルク(エアモルタル)の物性値

練り上がり直後に実施した物性試験の結果を表 - 9に示す。

表 - 9

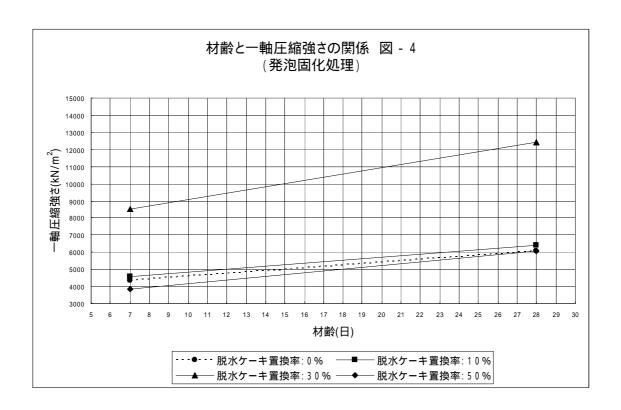
配合No.	脱水ケーキ 置換率 (%)	単位容積質量 (生 比 重) (t/m³)	フロー値 (mm)	空気量 (%)
	, ,	1.00	177 × 175	45.0
1	0	(0.95 ± 0.1)	(180 ± 20)	(45.0 ± 5)
	10	1.11	125 × 122	測定不能
2	10	(1.12)		(40.5)
2	20	1.54	測定不能	測定不能
3	30	(1.47)		(31.4)
4	5 0	1.59	測定不能	測定不能
4	50	(1.81)		(22.5)

注:基準となるエアミルク(脱水ケーキ置換率0%)を除く、試料は各物性値の規格値は設定しない。

注:各試験値の()内数値は目標値(理論値)

注:配合 3,4のフロー値は流動性がなく全く広がらなかったため、測定不能。

注:配合 2,3,4の空気量試験は、流動性がなくシリンダー内に試料を入れることができず、測定不能。


2).一軸圧縮強さ

所定材令に実施した一軸圧縮試験の結果を表 - 10に示す。

材齢と一軸圧縮強さの関係を図 - 4に示す。

表 - 10

	脱水ケーキ			材齢7日			材齢28日		
配合No.	置換率		供試体質量		一軸圧縮強さ	供試体質量		一軸圧縮強さ	
	(%)		(g)	(t/m³)	(kN/m2)	(g)	(t/m³)	(kN/m2)	
		1	1431	0.911	4367	1441	0.917	6468	
		2	1439	0.916	4242	1442	0.918	6309	
1 1	0	3	1436	0.914	4403	1441	0.917	5634	
'	U	4	1441	0.917	4362	1434	0.913	6162	
		5	1436	0.914	4270	1442	0.918	5698	
		平均	-	0.914	4329	-	0.917	6054	
		1	1765	1.123	4255	1753	1.116	6595	
		2	1765	1.123	4683	1753	1.116	5819	
2	10	3	1783	1.135	4879	1763	1.122	6404	
	10	4	1802	1.147	4652	1761	1.121	6201	
		5	1764	1.123	4375	1763	1.122	6920	
		平均	-	1.130	4569	-	1.119	6388	
		1	2430	1.547	8327	2433	1.549	12268	
		2	2438	1.552	9008	2426	1.544	12350	
3	30	3	2439	1.553	7811	2438	1.552	12070	
J	30	4	2436	1.551	9040	2439	1.553	12643	
		5	2451	1.560	8505	2444	1.556	12834	
		平均	-	1.553	8538	-	1.551	12433	
		1	2490	1.585	3673	2509	1.597	6468	
		2	2506	1.595	4161	2505	1.595	6182	
4	50	3	2498	1.590	3308	2491	1.586	6124	
4	50	4	2504	1.594	4189	2506	1.595	6010	
		5	2499	1.591	3932	2503	1.593	5481	
		平均	-	1.591	3853	-	1.593	6053	

3. 脱水ケーキの土質区分判定

1) 土質区分判定を建設発生土利用技術マニュアルに準じ、締固めた土のコーン指数試験の結果を基に判定する。 実施した試験結果を表 - 11に示す。

表 - 11

試料	含水比 (%)	コーン指数 (kN/m²)	土質区分
脱水ケーキ	60.3	259.9	第4b種発生土

2. 脱水ケーキの塩化物イオン(Cl⁻)濃度測定

1)脱水ケーキの塩化物イオン(CI^{*})濃度を細骨材の塩分測定試験方法に準じて試料準備し、塩分測定器 (SALMATE-100/W)にて試験を実施した。試験結果を表 - 12に示す。

表 - 12

		12 - 12
試料		塩化物イオン(Cl ⁻) 濃度 (%)
	1	1.151
的水ケーナ	2	1.161
脱水ケーキ	3	1.164
	平均	1.16

試験方法(試料準備):JIS A 5002 5.5(塩化物)に準ずる

(9) 試験結果まとめ

1)固化処理

固化処理の強度を上げるため現地にて脱水した試料(脱水ケーキ)に、発生砂利及び砕砂を混合 (質量比1:1)し試料とした。

脱水ケーキの占める容積が少なくなり、固化材の添加量は同じでも強度が見込める。

粒度分布が良くなることにより締固め度があがることから、密度が大きくなり、強度が見込める。

圧縮試験の結果、材齢7日で約2000~4000kN/m²の強度が見られたが、材齢28日への強度増加が 少なく最大でも、発生砂利混合試料、普通セメント添加の4303kN/m²であった。

砕砂に比べ発生砂利の強度が大きくなったのは、粒度分布の差(砕砂の最大粒径が2.5mmに対し発生砂利は10mm程度のものも含まれていた)による密度(締固め度)の差が原因と考えられる。

また、タフロック4型に比べ普通セメントの強度が大きくなったのは、前年度の試料に比べ含水比が40% 程度低下したこと、良質な材料を混合したことが原因かと思われた。

今後の対策として添加量の増加や固化材の変更等が考えられるが、安定処理での強度増加には限界があり、コンクリート並の強度は見込めないと思われる。

2) 発泡固化処理

エアミルクに、脱水ケーキを添加(容積比0% 50%置換)し強度を確認した。

練り上がり直後の基準となるエアミルクは、道路公団の規格値内であり、流動性(フロー値180mm ± 20)が確認できた。

このエアミルクに、脱水ケーキを置換える(増加させる)と、流動性は失われるが(水セメント比は同じで、単位水量が少なく、空気量が少なくなるため)、強度は増加する傾向にある。

ただし脱水ケーキ置換率50%では、空気量は基本のエアミルクの理論上半分になっているにもかかわらず、強度はほぼ同等であった。(空気量の低下より、脱水ケーキの影響が大きくなったと思われる。)本試験結果では、材齢28日脱水ケーキ置換率30%で12433k/m²(12.4N/mm²)の強度が確認できた。流動性を無視した配合にはなるが、強度はコンクリートに近づく結果となった。しかし構造物を浸水する場合、単位容積質量も問題になり、今回の置換率30%では供試体の湿潤密度が約1.55t/m³であり検討する要素の1つであると思われた。

(通常のコンクリートであれば見掛けの密度は2.2t/m³程度である。)

強度を大きくする為には、発泡固化処理で脱水ケーキ置換率30%の配合をベースに、配合を修正 (単位セメント量を多く、水セメント比を小さく、空気量を少なく)すれば幾分かの強度は見込めると考えられる。ただし空気量を少なくすると発泡固化ではなく、通常のモルタルに近づく配合になってしまう。

また目標とする強度が更に大きい場合、発泡固化(エアモルタル)の配合には無理があり、コンクリートの 材料(細骨材)に脱水ケーキを一部置換える方法が考えられる。

3.7.6. 大碆東側海域水底土砂分析

竜串湾内にて著しい泥土堆積があると考えられる大碆東側海域において、事業 化の際泥土除去を実施することを仮定し検討を実施する為に、大碆東側海域の水 底土砂分析を実施した。

水底土砂の分析の結果、当海域の水底土砂にダイオキシン類および重金属類など有害な物質は含まれていない。以下に分析結果を示す。

堆積土砂に含まれる有害物質の判定基準として海洋汚染防止法に基づく判定基準により表 3 7 1 に示す、32 項目及び水銀、PCB 及びダイオキシン類の含有試験を実施した。また、参考値として強熱減量の分析も実施した。

また、ダイオキシン類分析方法等の参考資料を添付資料に示す。

表 3 7 7 堆積土砂分析項目

(含有量試験)

計量の項目	単 位	計量の方法	基 準 値
強熱減量	%	環水管第127号(昭和53年) .4	-
水銀又はその化合物	mg/kg乾泥	環水管第127号(昭和53年) .5.1	25
ポリ塩化ビフェニル	mg/kg乾泥	環水管第127号(昭和53年) .15	10
(だノナナミハ米四ノ\北)			-

(ダイオキシン類分析)

計量の項目	単 位	計量の方法	基 準 値
ダイオキシン類濃度	pg-TEQ/g	ダイオキシン類に関る低湿調査マニュアル	150

溶	44	± #	田全	١
一个	тTi	ĦΤ\.	い ア に か り か り か り か り か り か り か り か り り か り り か り り か り り か り か り り か り り か り り か り り か り り か り り か り り り か り り り か り り り り り か り)

(/p LL H-V/////			
計量の項目	単 位	計量の方法	基準値
アルキル水銀化合物	mg/L	環境庁告示第59号(昭和46年)付表2	検出されないこと
水銀又はその化合物	mg/L	環境庁告示第59号(昭和46年)付表1	0.005
カドミウム又はその化合物	mg/L	JIS K0102 (1998年) 55.3	0.1
鉛又はその化合物	mg/L	JIS K0102 (1998年) 54.3	0.1
有機燐化合物	mg/L	環境庁告示第64号(昭和49年)付表1	1
六価クロム化合物	mg/L	JIS K0102 (1998年) 55.2.1	0.5
砒素又はその化合物	mg/L	JIS K0102 (1998年) 61.2	0.1
シアン化合物	mg/L	JIS K0102 (1998年) 38.1及び38.3	1
ポリ塩化ビフェニル	mg/L	環境庁告示第59号(昭和46年)付表3	0.003
銅又はその化合物	mg/L	JIS K0102 (1998年) 52.4	3
亜鉛又はその化合物	mg/L	JIS K0102 (1998年) 53.3	5
ふっ化物	mg/L	JIS K0102 (1998年) 34.1	15
トリクロロエチレン	mg/L	JIS K0125 (1998年) 5.1	0.3
テトラクロロエチレン	mg/L	JIS K0125 (1998年) 5.1	0.1
ベリリウム又はその化合物	mg/L	環境庁告示第13号(昭和48年)別表7	2.5
クロム又はその化合物	mg/L	JIS K0102 (1998年) 65.1.4	2
ニッケル又はその化合物	mg/L	JIS K0102 (1998年) 59.3	1.2
バナジウム又はその化合物	mg/L	JIS K0102 (1998年) 70.4	1.5
有機塩素化合物	mg/kg湿泥	環境庁告示第14号(昭和48年)別表1	40
ジクロロメタン	mg/L	JIS K0125 (1998年) 5.1	0.2
四塩化炭素	mg/L	JIS K0125 (1998年) 5.1	0.02
1,2-ジクロロエタン	mg/L	JIS K0125 (1998年) 5.1	0.04
1,1-ジクロロエチレン	mg/L	JIS K0125 (1998年) 5.1	0.2
シス-1,2-ジクロロエチレン	mg/L	JIS K0125 (1998年) 5.1	0.4
1,1,1-トリクロロエタン	mg/L	JIS K0125 (1998年) 5.1	3
1,1,2-トリクロロエタン	mg/L	JIS K0125 (1998年) 5.1	0.06
1,3-ジクロロプロペン	mg/L	JIS K0125 (1998年) 5.1	0.02
チウラム	mg/L	環境庁告示第59号(昭和46年)付表4	0.06
シマジン	mg/L	環境庁告示第59号(昭和46年)付表5	0.03
チオベンカルブ	mg/L	環境庁告示第59号(昭和46年)付表5	0.2
ベンゼン	mg/L	JIS K0125 (1998年) 5.1	0.1
セレン又はその化合物	mg/L	JIS K0102 (1998年) 67.2	0.1

[・]溶出液の作成方法は、環境庁告示第14号(昭和48年)です。

表 3 -7 8 堆積土砂分析結果(有害物質)

(含有量試験)

計量の項目	単 位	計量の結果	基準値
強熱減量	%	12.6	-
水銀又はその化合物	mg/kg乾泥	0.05	25
ポリ塩化ビフェニル	mg/kg乾泥	0.01 未満	10

(溶出試験)

			Ī
計量の項目	単 位	計量の結果	基準値
アルキル水銀化合物	mg/L	0.0005 未満	検出されないこと
水銀又はその化合物	mg/L	0.0005 未満	0.005
カドミウム又はその化合物	mg/L	0.001 未満	0.1
鉛又はその化合物	mg/L	0.005 未満	0.1
有機燐化合物	mg/L	0.1 未満	1
六価クロム化合物	mg/L	0.02 未満	0.5
砒素又はその化合物	mg/L	0.005 未満	0.1
シアン化合物	mg/L	0.1 未満	1
ポリ塩化ビフェニル	mg/L	0.0005 未満	0.003
銅又はその化合物	mg/L	0.01 未満	3
亜鉛又はその化合物	mg/L	0.01 未満	5
ふっ化物	mg/L	0.4	15
トリクロロエチレン	mg/L	0.002 未満	0.3
テトラクロロエチレン	mg/L	0.0005 未満	0.1
ベリリウム又はその化合物	mg/L	0.01 未満	2.5
クロム又はその化合物	mg/L	0.02 未満	2
ニッケル又はその化合物	mg/L	0.01 未満	1.2
バナジウム又はその化合物	mg/L	0.01 未満	1.5
有機塩素化合物	mg/kg湿泥	11	40
ジクロロメタン	mg/L	0.002 未満	0.2
四塩化炭素	mg/L	0.0002 未満	0.02
1,2-ジクロロエタン	mg/L	0.0004 未満	0.04
1,1-ジクロロエチレン	mg/L	0.002 未満	0.2
シス-1,2-ジクロロエチレン	mg/L	0.004 未満	0.4
1,1,1-トリクロロエタン	mg/L	0.0005 未満	3
1,1,2-トリクロロエタン	mg/L	0.0006 未満	0.06
1,3-ジクロロプロペン	mg/L	0.0002 未満	0.02
チウラム	mg/L	0.0006 未満	0.06
シマジン	mg/L	0.0003 未満	0.03
チオベンカルブ	mg/L	0.002 未満	0.2
ベンゼン	mg/L	0.001 未満	0.1
セレン又はその化合物	mg/L	0.002 未満	0.1

[·]溶出液の作成方法は、環境庁告示第14号(昭和48年)です。

表379 堆積土砂分析結果(ダイオキシン類)

計量結果(底質)

	/w/ // /							
		ダイオキシン類						
		実測	濃度	og/g	毒性当量	基準値		
測定地点	ダイオキシン	ジベンゾフラン	コプラナーPCB	ダイオキシン類	(TEF1998)			
	(PCDDs)	(PCDFs)	(Co-PCB)	PCDDs+PCDFs+Co-PCB	pg-TEQ/g	pg-TEQ/g		
竜串水底土	沙 2700	47	13	2700	3.0	150		

毒性当量の算出にはWHO-TEF(1998)を用いた。

毒性当量は計量法第107条の対象外項目である。

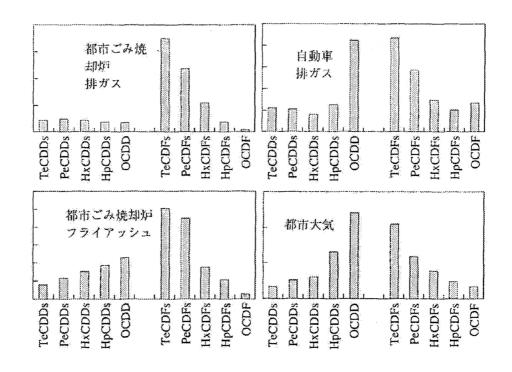
3.7.7. 堆積土砂の起源について

堆積土砂の分析結果から、堆積土砂の起源について考察する。

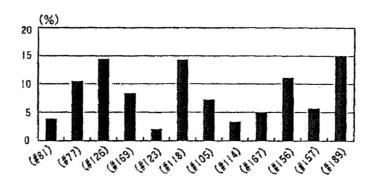
有害物質の分析結果においては、すべての項目において基準値以下であり、 またほとんどの項目が報告下限値まで達していない。

その中で有機塩素化合物は、基準値 40mg/kg に対し、計量値 11mg/kg が報告されおり、以下に示すダイオキシン類の分析結果から推察されるように堆積土砂は農薬の混じった水田など農地の土である可能性が考えられる。

ここでは、さらにダイオキシン類の分析結果にもとづいて、堆積土砂に含まれているダイオキシン類の発生源について考察する。またダイオキシン類に関する用語の解説は添付資料2:ダイオキシンにかかわる基礎知識による。

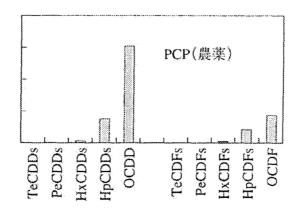

(1) ダイオキシン類発生源と因果関係について

ダイオキシン類の環境汚染問題を評価する場合には、発生源との因果関係を検討しなければならない。現在判明している代表的な4種の発生源との因果関係を以下に整理した。また、図371、図372に各種試料の代表的な同族体及び異性体組織を示した。各図の構成は、横軸に異性体もしくは同族体を示し、縦軸に横軸の実測濃度合計を100とした相対濃度を示している。


燃焼・焼却系起源のダイオキシン類

ほとんど全ての異性体が検出され、また異性体の存在パターンも類似している。

相対的にジベンゾフランの占める割合が高いのが特徴的である 1)。



その他に、コプラナーPCBの中では#169,#126,#189が焼 却起源であるといわれている6)。

焼却排ガス(Total)の異性体構成比

農薬等の化学工業製品中に不純物として含まれるダイオキシン類特定の異性体が支配的である。現在知られている知見は以下のとおり。水田除草剤 C N P (クロルニトロフェン)[商品名:エムオン、MO]・1,3,6,8-T C D D、1,3,7,9-T C D D 1)、2)、3) 水田除草剤 P C P (ペンタクロロフェノール)[商品名:PCP]・1,2,3,4,5,6,7,8-O C D D 3)、4)、5)

また、上記以外にこれまで使用された農薬のうち、ダイオキシン類が含まれることが明らかになっているものは、2,4,5-T、2,4,5-T P、2,4-P A、PCP(ペンタクロロフェノール)、CNP(クロロニトロフェン)、NIP(ニトロフェン)、クロメトキシン、PNCB(ペンタクロロニトロベンゼン)などである。このうち 2,4-P A と PNCB を除き登録抹消され、製造販売は行われていない 3)。

パルプ廃液・紙製品

パルプ廃液・紙製品では、2,3,7,8-TCDF、1,2,7,8-TCDF、1,2,8,9-TCDF、2,3,7,8-TCDDの4つの異性体が支配的である1)。

PCB製品

現在PCB製品の製造販売は行われていないが、過去使用にされた製品の残留成分が各所で検出されている。下図に環境大気のコプラナーPCBの組成を示した。

PCB製品(Total)の異性体構成比

(2) 調査結果

異性体及び同族体組成を図373に示した。

各図の構造は、前述の代表例と同様に横軸に異性体もしくは同族体を示し、 縦軸に横軸の実測濃度合計を100とした相対濃度を示している。

ダイオキシン・ジベンゾフラン (PCDDs+PCDFs)の同族体組成を見ると、OCDDが特徴的に高い傾向を示した。代表的な組成と比べると、下水汚泥と近似したパターンを示した。

ダイオキシン類の起源としては、ペンタクロロフェノール(PCP)やクロルニトロフェン(CNP)などの農薬中の不純物に由来するものがあるが、今回の結果ではダイオキシン・ジベンゾフランの主要な起源は、農薬、特にPCP由来である可能性が高いと考えられる。

コプラナーPCB(Co PCB)の異性体組成をみると、典型的なPCB製品の異性体組成に類似しており、PCB製品に多く含まれる#118,#105,#77などが特徴的に検出された。

以上のことから、当該水底土砂中のダイオキシン類は過去に使用された農薬(PCP、水田除草剤)およびPCB製品由来の土砂が、主に陸域から運搬されて堆積したものと推察される。

出典:

¹⁾ 小林進・斉藤貢一・小川政彦・小野雄策・杉崎三男 (1988) ダイオキシン類の分析と評価について、第2回日本 - 中国学術シンポジウム公園抄録

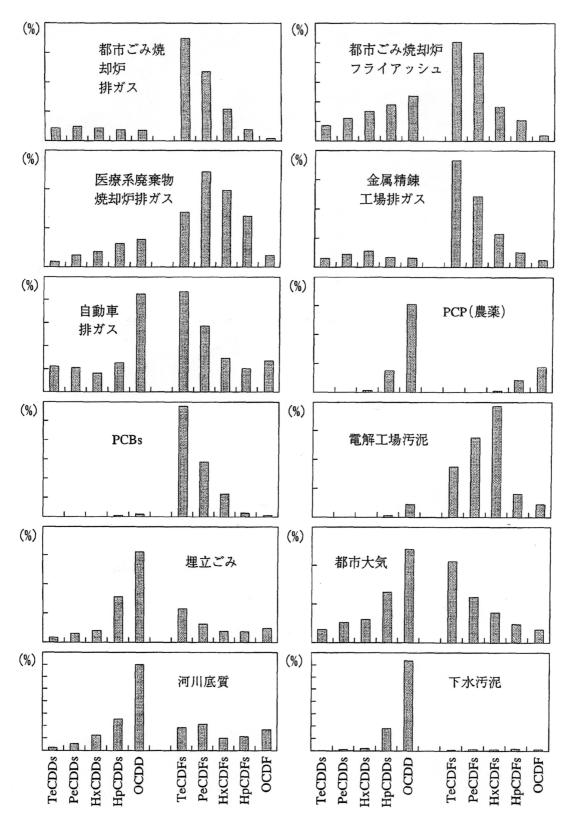
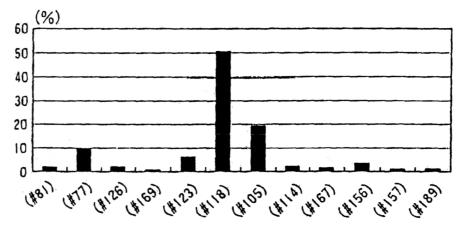
²⁾ 森田昌敏 (1999) ダイオキシン、化学と教育 Vol.47、No.2、pp128 -131

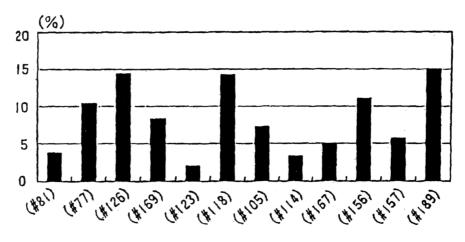
³⁾ T . T A K A D A (1998) ダイオキシン汚染の原点、http://www.asahi-net.or.jp/~XJ6T-TKD/env/vietnam.html

⁴⁾ 森田昌敏 (1977) ダイオキシン問題の概要、かんきょう、1977 年 11 月号、pp.6 8

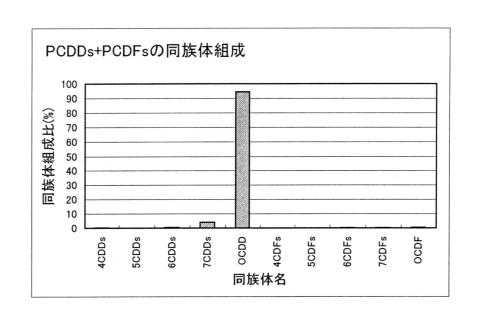
⁵⁾ 橋本俊次・勝真理子・関比呂伸・常藤透朗・伊藤裕康・森田昌敏 (1999) 土壌、大気、ハト脂 肪組織を用いた環境におけるダイオキシンに関する研究、環境科学 Vol.9、No.1、pp.53-69

⁶⁾ 通商産業省立地環境局編 (2000) 、公害防止の技術と法規〔ダイオキシン類編〕P.185



図 3 7 -10 各種試料の代表的なダイオキシン類 (PCDDs + PCDFs)の同族体組成 (公害防止の技術と法規〔ダイオキシン類編〕 (2000)、通商産業省環境立地局より引用)

環境大気(Total)の異性体構成比



PCB製品(Total)の異性体構成比

環境大気(Total)の異性体構成比

図37-11 環境大気、PCB製品、排ガス中の代表的なCo-PCB組成 (揮散するPCB、資源環境対策、Vol37,No.2 (2001)、佐藤博より引用)

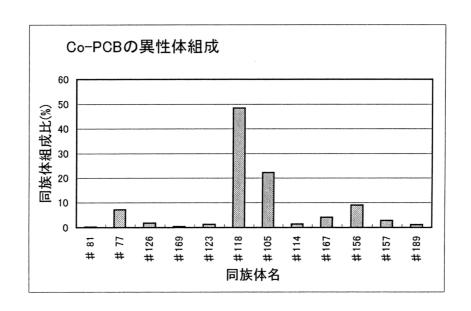


図3-7-12 試料の同族体および異性体の組成

3.7.8. 添付資料

以下に添付資料を添付する。

添付資料 1:平成 16年度竜串地区自然再生自然推進計画調査の内、泥土処理実証試験に関るダイオキシン類分析

添付資料2:ダイオキシンにかかわる基礎知識

環境省 殿

平成16年度

竜串地区自然再生推進計画調査の内 泥土処理実証試験に係るダイオキシン類分析

埼玉県川口市芝鶴ヶ丸6906 -10 株式会社東京久栄技術センター

TEL: 0 4 8 - 2 6 8 - 1 6 0 0

1. 概要

1-1 名称

平成 16 年度竜串地区自然再生推進計画調査 泥土処理実証試験業務

1-2 目的

上記計画における堆積土砂の除去に伴う環境影響評価と浚渫後の処分方法の検討をする こと。

1-3 試料採取日

平成 17 年 3 月 27 日 (平成 17 年 3 月 31 日試料受領)

14 調査方法

持ち込み試料

1.5 調査地点

高知県土佐清水市竜串湾内の1点。

1.6 分析方法

ダイオキシン類に係る底質調査測定マニュアル(平成 13 年 3 月、環境庁水質保全局)に 従って分析を実施した。また、ダイオキシン類分析対象物質の一覧を表1 - 1 に示した。

表 1-1 ダイオキシン類分析対象物質一覧

塩素数	PCDDs	PCDFs	Co-PCBs
4	2,3,7,8-T4CDD	2,3,7,8-T4CDF	3,4,4',5-T4CB
	1,3,6,8-T4CDD	1,3,6,8-T4CDF	3,3',4,4'-T4CB
	1,3,7,9-T4CDD	1,2,7,8-T4CDF	
	その他のT4CDDs	その他のT4CDFs	
5	1,2,3,7,8-P5CDD	1,2,3,7,8-P5CDF	3,3',4,4',5-P5CB
	その他のP5CDDs	2,3,4,7,8-P5CDF	2',3,4,4',5-P5CB
		その他のP5CDFs	2,3',4,4',5-P5CB
			2,3,3',4,4'-P5CB
			2,3,4,4',5-P5CB
6	1,2,3,4,7,8-H6CDD	1,2,3,4,7,8-H6CDF	3,3',4,4',5,5'-H6CB
	1,2,3,6,7,8-H6CDD	1,2,3,6,7,8-H6CDF	2,3',4,4',5,5'-H6CB
	1,2,3,7,8,9-H6CDD	1,2,3,7,8,9-H6CDF	2,3,3',4,4',5-H6CB
	その他のH6CDDs	2,3,4,6,7,8-H6CDF	2,3,3',4,4',5'-H6CB
		その他のH6CDFs	
7	1,2,3,4,6,7,8-H7CDD	1,2,3,4,6,7,8-H7CDF	2,3,3',4,4',5,5'-H7CB
	その他のH7CDDs	1,2,3,4,7,8,9-H7CDF	
		その他のH7CDFs	
8	O8CDD	O8CDF	
L		l ,	

注)PCDD:ポリ塩化ジベンゾ p-ジオキシン PCDF:ポリ塩化ジベンゾフラン

PCDF:ボリ塩化ジベンゾフラン Co-PCB:コプラナーポリ塩化ピフェニル

2. 結果

2.1 ダイオキシン類分析結果

表2-1、表2-2にダイオキシン類の分析結果を示した。

各異性体別の結果には、試料毎の検出・定量下限値および毒性等価係数(以下 TEF と略) も併記した。毒性当量(以下 TEQ と略)は、定量したダイオキシン類の実測濃度に TEF を 乗じて算出した。

2-2 TEQ 算出要領

TEF は WHO -TEF (1998)を用いて算出した。また、実測濃度が検出下限値以上の場合は、実測濃度にそのまま TEF を乗じて算出し、検出下限値未満の場合は、検出下限値の1/2に TEF を乗じて算出した。

2-3 結果の評価

ダイオキシン類の濃度は、3.0pg -TEQ/gであった。環境基準値の 150 pg -TEQ/gより2 オーダー低い結果であり、浚渫泥の処分に問題のない結果であった。

表2-1 ダイオキシン類分析結果(一覧)

	ダイオキシン類					
		実別	濃度	og/g	毒性当量	基準値
測定地点	ダイオキシン	ジベンゾフラン	コプラナーPCB	ダイオキシン類	(TEF1998)	
	(PCDDs)	(PCDFs)	(Co-PCB)	PCDDs+PCDFs+Co-PCB	pg-TEQ/g	pg-TEQ/g
竜串水底土砂	2700	47	13	2700	3.0	150

表2.2 ダイオキシン類分析結果

ダイオキシン類測定結果(底質・含有)

試料名 水底土 採取日 平成17年3月27日

	採取日	<u> 平成17年3月27日</u> 1		中海海中	+	=+**/ ◆	= 44.657元パル	丰州 业目
			実測濃度	試料の	試料の	毒性等価係数		
	項目	異性体·同族体		,	検出下限	定量下限	TEF	TEQ
			pg/g	pg/g	pg/g	(1998)	pg-TEQ/g	
		1,3,6,8-TeCDD	12	0.08	0.3	-	-	
		1,3,7,9-TeCDD		4.7	0.08	0.3	-	-
		2,3,7,8-TeCDD	ND	0.08	0.3	1	0.0400000	
	ダ	TeCDDs		17	-	-	-	-
	1	1,2,3,7,8-PeCDD		0.4	0.1	0.4	1	0.4000000
	才	PeCDDs		4.3	-	-	-	-
	+	1,2,3,4,7,8-HxCDD		1.1	0.1	0.5	0.1	0.1100000
	シ	1,2,3,6,7,8-HxCDD		1.7	0.2	0.5	0.1	0.1700000
	ン	1,2,3,7,8,9-HxCDD		2.8	0.2	0.6	0.1	0.2800000
		HxCDDs		25	-	-	-	-
		1,2,3,4,6,7,8-HpCDD		150	0.2	0.6	0.01	1.5000000
		HpCDDs		340	-	-	-	-
		OCDD		2300	0.3	1	0.0001	0.2300000
		Total PCDDs		2686		PCDD TEQ		2.7300000
		1,3,6,8-TeCDF		ND	0.07	0.2	-	-
		1,2,7,8-TeCDF		ND	0.07	0.2	-	-
		2,3,7,8-TeCDF		ND	0.07	0.2	0.1	0.0035000
		TeCDFs		2.0	-	-	-	-
		1,2,3,7,8-PeCDF		(0.23)	0.08	0.3	0.05	0.0115000
	ジ	2,3,4,7,8-PeCDF		(0.09)	0.08	0.3	0.5	0.0450000
	ベ	PeCDFs		2.1	-	-	-	-
	ン	1,2,3,4,7,8-HxCDF		0.5	0.1	0.5	0.1	0.0500000
	ゾ	1,2,3,6,7,8-HxCDF		(0.2)	0.2	0.6	0.1	0.0200000
	フ	1,2,3,7,8,9-HxCDF		ND	0.2	0.6	0.1	0.0100000
	ラ	2,3,4,6,7,8-HxCDF		0.5	0.2	0.5	0.1	0.0500000
	ラ ン	HxCDFs		7.2	-	-	-	-
		1,2,3,4,6,7,8-HpCDF		5.4	0.2	0.6	0.01	0.0540000
		1,2,3,4,7,8,9-HpCDF		1.3	0.2	0.5	0.01	0.0130000
		HpCDFs		19	-	-	-	-
		OCDF		17	0.4	1	0.0001	0.0017000
		Total PCDFs		47		PCDF TEQ		0.2587000
		PCDD+PCDF		2734	PC	DD+PCDF T	EQ	2.9887000
	ノンオルト	3,4,4',5-TeCB	81	ND	0.2	0.6	0.0001	0.0000100
		3,3',4,4'-TeCB	77	0.6	0.1	0.5	0.0001	0.0000600
		3,3',4,4',5-PeCB	126	ND	0.2	0.6	0.1	0.0100000
		3,3',4,4',5,5'-HxCB	169	ND	0.1	0.3	0.01	0.0005000
ا ا		ノンオルトCBs		0.6	-	-	-	0.0105700
プ	モノオルト	2',3,4,4',5-PeCB	123	ND	0.3	0.9	0.0001	0.0000150
ラー		2,3',4,4',5-PeCB	118	6.1	0.1	0.4	0.0001	0.0006100
ナ 		2,3,3',4,4'-PeCB	105	2.2	0.07	0.2	0.0001	0.0002200
1		2,3,4,4',5-PeCB	114	(0.2)	0.2	0.6	0.0005	0.0001000
P		2,3',4,4',5,5'-HxCB	167	1.0	0.2	0.8	0.00001	0.000100
C B		2,3,3',4,4',5-HxCB	156	2.2	0.2	0.6	0.0005	0.0011000
"		2,3,3',4,4',5'-HxCB	157	0.6	0.1	0.3	0.0005	0.0003000
		2,3,3',4,4',5,5'-HpCB	189	(0.25)	0.09	0.3	0.0003	0.0000000
		<u> </u>	100	13	-	-	-	0.0003800
		Total Co-PCB		13		Co-PCB TEC	5	0.0023600
	PCL			2747	<u> </u>	Total TEQ	*	3.0
PCDD+PCDF+CoPCB			4171		i Utal TEQ		5.0	

注1)実測濃度中のNDは検出下限値未満を表わす。

注2)かっこ付は検出下限値以上、定量下限値未満を表わす。 注3)毒性等価係数はWHO-TEF(1998)を適用した。 注4)毒性当量は、検出下限値以上の場合はそのまま、検出下限値未満の場合は検出下限値の1/2を乗じて 算出した。

3.分析方法

3-1 前処理方法

図3-1に前処理方法を示した。

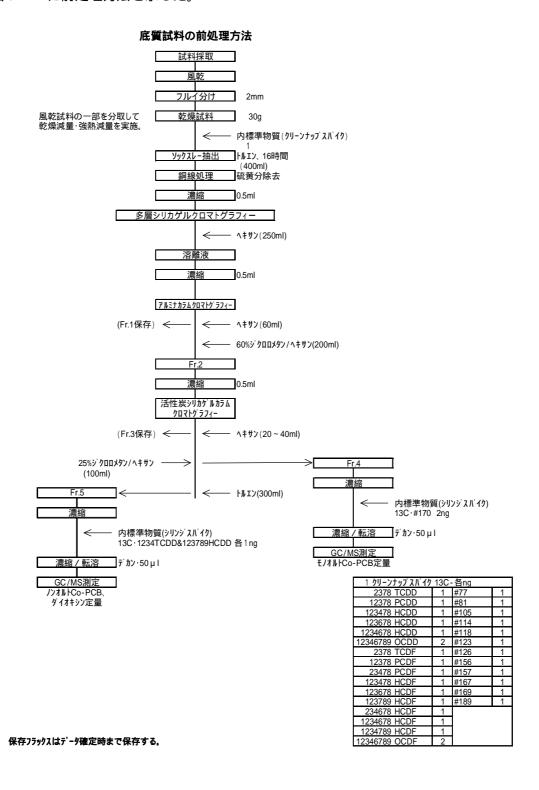


図3-1前処理方法

3-2 装置測定条件

表3-1に高分解能 GC MS の測定条件を示した。

表 3-1 測定条件

<u> </u>	
	▲質量分析計の測定条件
使用機器	T
ガスクロマトグラフ部	アジレント製 HP-6890
	日本電子製 JMS-700 MStation
	<u> バベンゾフラン 4-6塩化物 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>
モード	スプリットレス
インレット	260
カラム	SP-2331 0.32mm L=60m Thin=0.2 μ m
カラム温度	100 (1.5min) 20 /min 200 (0min) 3 /min 260 (25.5min)
インターフェイス	260
イオン化法	EIモード
イオン化室	260
イオン化エネルキ゚ー	70eV
イオン化電流	600 μ A
検出法	ロックマスSIM
分解能	>10000
ダイオキシン・シ	ブベンゾフラン 7-8塩化物
モード	スプリットレス
インレット	280
カラム	DB-17 0.32mm L=30m Thin=0.15 μ m
カラム温度	100 (1.5min) 20 /min 200 (0min) 5 /min 280 (4.5min)
インターフェイス	280
イオン化法	EIモード
イオン化室	280
イオン化エネルキ゚ー	70eV
イオン化電流	600 μ A
検出法	ロックマスSIM
分解能	>10000
Co-PCB	
モード	スプリットレス
インレット	280
カラム	HT- 8 0.22mm L=50m Thin=0.25 μ m
カラム温度	130 (1.5min) 20 /min 220 (0min) 5 /min 320 (2min)
インターフェイス	320
イオン化法	EIモード
イオン化室	320
イオン化エネルキ゚ー	70eV
イオン化電流	600 µ A
検出法	ロックマスSIM
分解能	>10000

3-3 同定・定量方法

表3-2に同定・定量方法を示した。

表 3-2 同定・定量法

ダイオキシン類の同定・定量方法

前処理した試料を、高分解能がスクロマトグラフ質量分析計に1 µ L注入し、各ダイオキシン・ジ ペンソゾフラン・コプラナー PCBについてM、M+2、M+4のイオンから2つをモニターしSIMクロマトグラムを得た。

得られたクロマトグラムのピークから以下の条件で各同族体・異性体を同定し、各塩素数毎に1から4つの内標準物質を用いて内標準法により定量した。

各ダイオキシン・ジャ、ンソプラン・コプラナーPCBについて相当する保持時間のピークであること。 2つのモニターイオンのピーク面積比が天然存在比の理論値とほぼ一致すること。 2378位塩素置換体、コプラナーPCBについては対応する内標準物質(C13ラペル化標準)と保持時間が一致すること。

S/N比が3以上であり、かつ検出下限値以上であること。

	SIM <u>設定質量数</u>							
	塩素数	モニター	ダイオキ	シン	<u>ジベンソ</u> ゙フラン		コプラナー	PCB
		イオン	同族体	m/z	同族体	m/z	同族体	m/z
目的成分	4	M^{+}	T4CDDs	319.8965	T4CDFs	303.9016	T4CBs	289.9224
		(M+2) ⁺		321.8936		305.8987		291.9194
	5	(M+2) ⁺	P5CDDs	355.8546	P5CDFs	339.8597	P5CBs	325.8804
		(M+4) ⁺		357.8516		341.8567		327.8775
	6	(M+2) ⁺	H6CDDs	389.8157	H6CDFs	373.8208	H6CBs	359.8415
		(M+4) ⁺		391.8127		375.8178		361.8385
	7	(M+2) ⁺	H7CDDs	423.7767	H7CDFs	407.7818	H7CBs	393.8025
		(M+4) ⁺		425.7737		409.7788		395.7995
	8	(M+2) ⁺	OCDDs	457.7377	OCDFs	441.7428	-	-
		(M+4) ⁺		459.7348		443.7398	-	-
内標準	4	M ⁺	¹³ C-T4CDDs	331.9368	¹³ C-T4CDFs	315.9419	¹³ C-T4CBs	301.9626
		(M+2) ⁺		333.9339		317.9389		303.9597
	5	(M+2) ⁺	¹³ C-P5CDDs	367.8949	¹³ C-P5CDFs	351.9000	¹³ C-P5CBs	337.9207
		(M+4) ⁺		369.8919		353.8970		339.9178
	6	(M+2) ⁺	¹³ C-H6CDDs	401.8559	¹³ C-H6CDFs	385.8610	¹³ C-H6CBs	371.8817
		(M+4) ⁺		403.8530		387.8580		373.8788
	7	(M+2) ⁺	¹³ C-H7CDDs	435.8169	¹³ C-H7CDFs	419.8220	¹³ C-H7CBs	405.5428
		(M+4) ⁺		437.8140		421.8191	_	407.8398
	8	(M+2) ⁺	¹³ C-OCDDs	469.7779	¹³ C-OCDFs	453.7830	-	-
		(M+4) ⁺		471.7750		455.7801		-

3 4 標準物質

表3-3に使用した標準物質の一覧を示した。

表 3 3 標準物質一覧

ダイオキシ	ン、ジベンゾフランおよびコプラナーPCBの標	· 準物質		
	測定対象物質	内標準物質		
		印はシリンジスバイク、他はクリーンナップスバイク		
T4CDDs	2,3,7,8-Tetrachlorodibenzo-p-dioxin	¹³ C-2,3,7,8-Tetrachlorodibenzo-p-dioxin		
		¹³ C-1,2,3,4-Tetrachlorodibenzo-p-dioxin		
P5CDDs	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	¹³ C-1,2,3,7,8-Pentachlorodibenzo-p-dioxin		
H6CDDs	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	¹³ C-1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin		
	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	¹³ C-1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin		
	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	¹³ C-1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin		
H7CDDs	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	¹³ C-1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin		
OCDDs	Octachlorodibenzo-p-dioxin	¹³ C-Octachlorodibenzo-p-dioxin		
T4CDFs		¹³ C-1,3,6,8-Tetrachlorodibenzofuran		
	2,3,7,8-Tetrachlorodibenzofuran	¹³ C-2,3,7,8-Tetrachlorodibenzofuran		
P5CDFs	1,2,3,7,8-Pentachlorodibenzofuran	¹³ C-1,2,3,7,8-Pentachlorodibenzofuran		
	2,3,4,7,8-Pentachlorodibenzofuran	¹³ C-2,3,4,7,8-Pentachlorodibenzofuran		
H6CDFs	1,2,3,4,7,8-Hexachlorodibenzofuran	¹³ C-1,2,3,4,7,8-Hexachlorodibenzofuran		
	1,2,3,6,7,8-Hexachlorodibenzofuran	¹³ C-1,2,3,6,7,8-Hexachlorodibenzofuran		
	1,2,3,7,8,9-Hexachlorodibenzofuran	¹³ C-1,2,3,7,8,9-Hexachlorodibenzofuran		
	2,3,4,6,7,8-Hexachlorodibenzofuran	¹³ C-2,3,4,6,7,8-Hexachlorodibenzofuran		
H7CDFs	1,2,3,4,6,7,8-Heptachlorodibenzofuran	¹³ C-1,2,3,4,6,7,8-Heptachlorodibenzofuran		
	1,2,3,4,7,8,9-Heptachlorodibenzofuran	¹³ C-1,2,3,4,7,8,9-Heptachlorodibenzofuran		
OCDFs	Octachlorodibenzofuran	¹³ C-Octachlorodibenzofuran		
T4CBs	3,3',4,4'-Tetrachlorinatedbiphnyl	¹³ C-3,3',4,4'-Tetrachlorinatedbiphnyl		
	3,4,4',5-Tetrachlorinatedbiphnyl	¹³ C-3,4,4',5-Tetrachlorinatedbiphnyl		
P5CBs		¹³ C-2,3,3',5,5'-Pentachlorinatedbiphnyl		
	2,3,3',4,4'-Pentachlorinatedbiphnyl	¹³ C-2,3,3',4,4'-Pentachlorinatedbiphnyl		
	2,3,4,4',5-Pentachlorinatedbiphnyl	¹³ C-2,3,4,4',5-Pentachlorinatedbiphnyl		
	2,3',4,4',5-Pentachlorinatedbiphnyl	¹³ C-2,3',4,4',5-Pentachlorinatedbiphnyl		
	2',3,4,4',5-Pentachlorinatedbiphnyl	¹³ C-2',3,4,4',5-Pentachlorinatedbiphnyl		
	3,3',4,4',5-Pentachlorinatedbiphnyl	¹³ C-3,3',4,4',5-Pentachlorinatedbiphnyl		
H6CBs	2,3,3',4,4',5-Hexachlorinatedbiphnyl	¹³ C-2,3,3',4,4',5-Hexachlorinatedbiphnyl		
	2,3,3',4,4',5' - Hexachlorinatedbiphnyl	13C-2,3,3',4,4',5'-Hexachlorinatedbiphnyl		
	2,3',4,4',5,5' - Hexachlorinatedbiphnyl	¹³ C-2,3',4,4',5,5'-Hexachlorinatedbiphnyl		
	3,3',4,4',5,5'-Hexachlorinatedbiphnyl	¹³ C-3,3',4,4',5,5'-Hexachlorinatedbiphnyl		
H7CBs		¹³ C-2,2',3,3',4,4',5-Heptachlorinatedbiphnyl		
	2,3,3',4,4',5,5'-Heptachlorinatedbiphnyl	¹³ C-2,3,3',4,4',5,5'-Heptachlorinatedbiphnyl		

上記の標準物質は、全てWellington Laboratories製のものを使用した。

参考資料

SIMクロマトグラム

解説

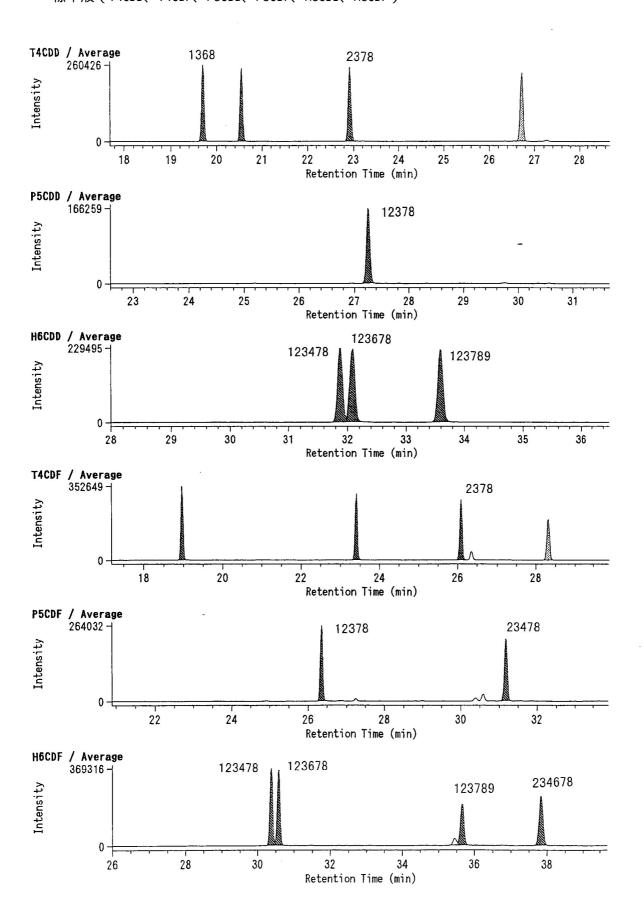
SIMとは、

選択イオンモニタリング (Selected Ion Monitoring) の略であり、特定の質量を持ったイオンだけを測定することで選択性を高めることができる質量分析法である。

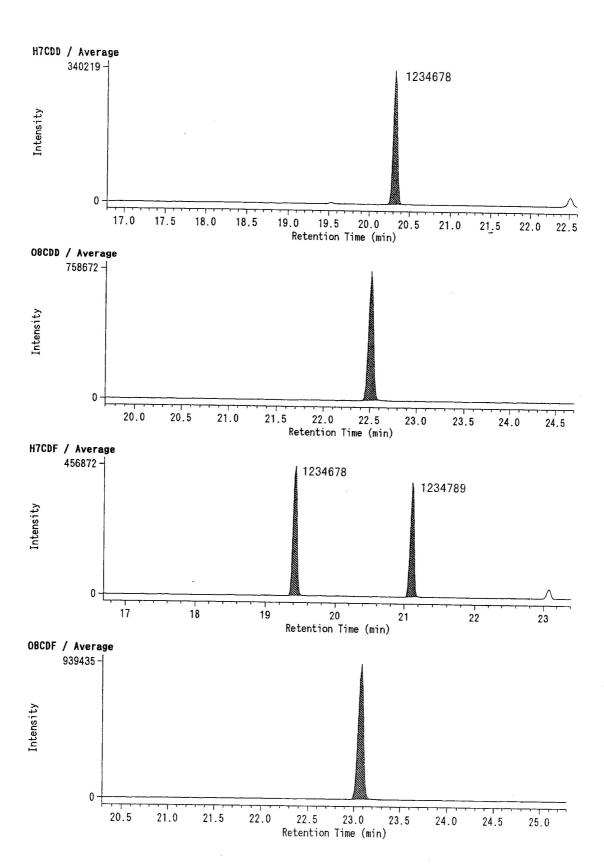
ダイオキシン類の分析には TeCDDs などと表現されるそれぞれの同族体について、各 2 つの質量を測定し、定量と同時に検出ピークの定性も行う。

クロマトグラムとは、

ダイオキシン類は、置換塩素数が同じ各同族体の中に、置換位置だけが異なる多数の 異性体が存在する。測定試料をガスクロマトグラフに注入すると、これらの異性体は わずかな性質の違いによりキャピラリーカラム中で分離され、特定の異性体は特定の 時間にカラムから検出器(この場合は質量分析計)に導かれスパイク状の信号(ピー ク)として表わされる。この縦軸に信号強度、横軸に時間をとったチャートをクロマ トグラムと呼ぶ。

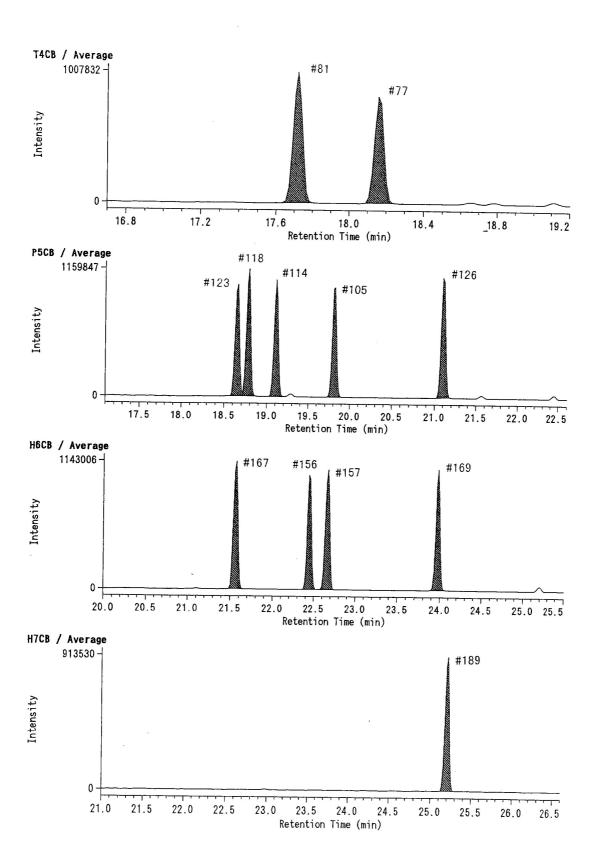

次頁以降に、標準液と試料のクロマトグラムを示した。

それぞれの頁に、 $4 \sim 6$ 塩素化ダイオキシン・ジベンゾフラン (6 同族体)、 $7 \cdot 8$ 塩素化ダイオキシン・ジベンゾフラン (4 同族体)、 ノンオルト -コプラナーPCB (3 同族体) モノオルト -コプラナーPCB (3 同族体) でまとめられている。

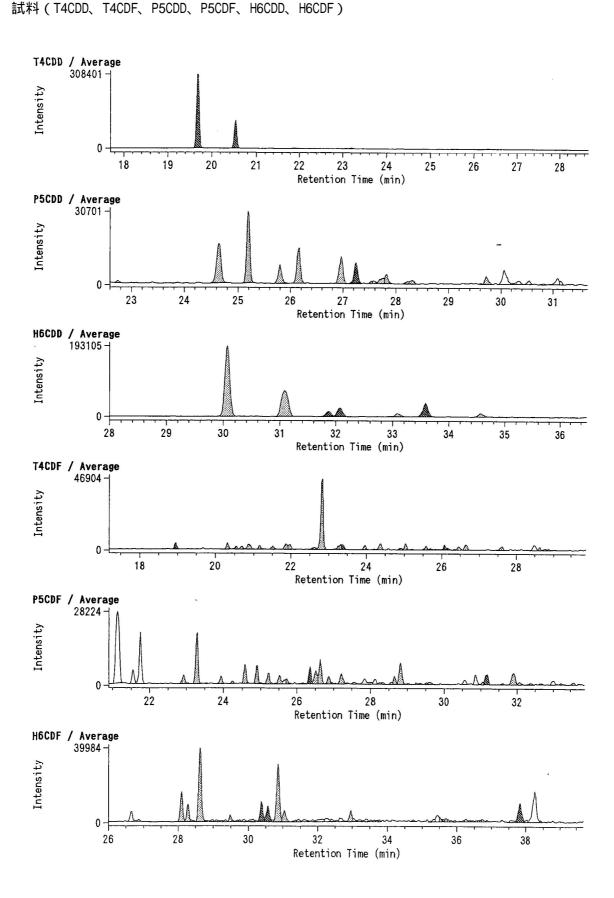

各クロマトグラムの左上に同族体名(略号)が示されている。また、ここに示したクロマトグラムは定量目的物質のみを示し、測定した2質量の平均で表わした。

最初に標準物質のクロマトグラム(コプラナーPCB が共通なので3枚)次に試料のクロマトグラム(7・8塩素化ダイオキシン・ジベンゾフランの10倍希釈を含め5枚)を示した。

クロマトグラム 1 標準液 (T4CDD、T4CDF、P5CDD、P5CDF、H6CDD、H6CDF)

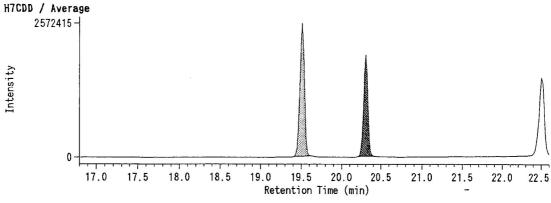


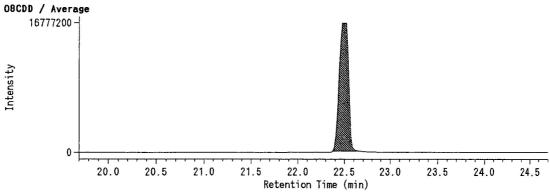
クロマトグラム 2 標準液 (H7CDD、08CDD、H7CDD、08CDF)

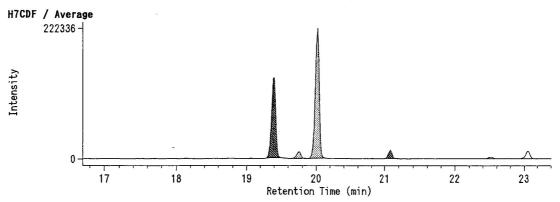


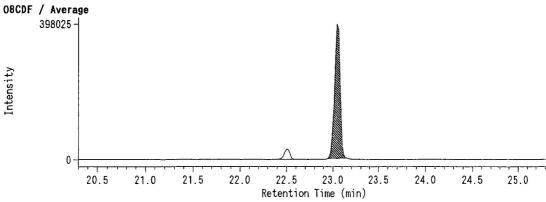
クロマトグラム3

標準液 (Co PCB 共通: T4CB、P5CB、H6CB、H7CB)

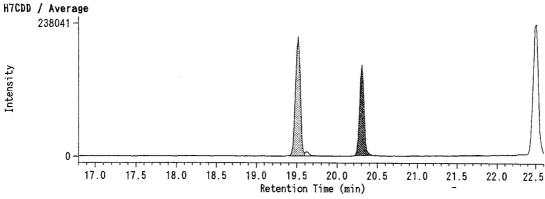


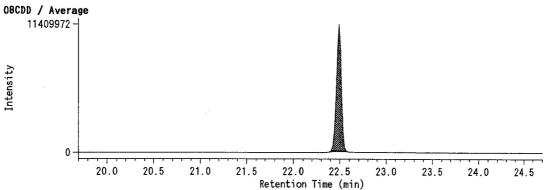

クロマトグラム 4

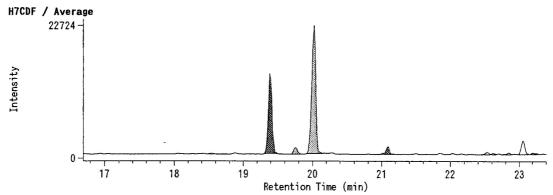


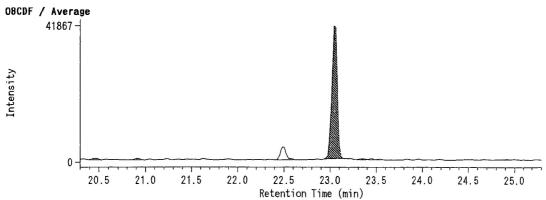

クロマトグラム 5

試料(H7CDD、O8CDD、H7CDD、O8CDF)

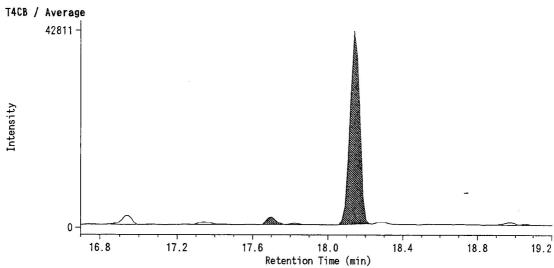


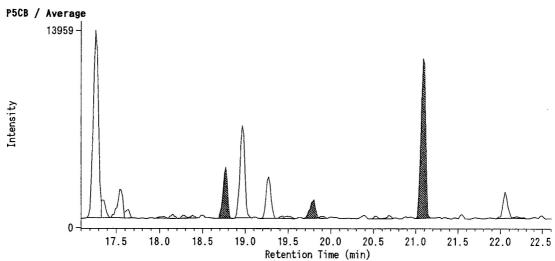


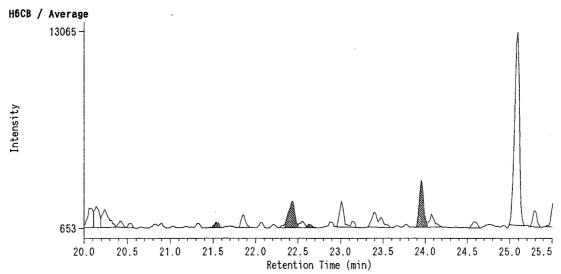



クロマトグラム 6

試料 (H7CDD、O8CDD、H7CDD、O8CDF) 10 倍希釈

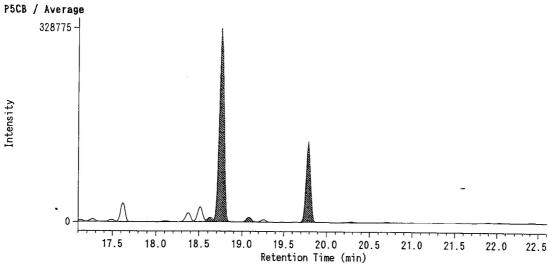


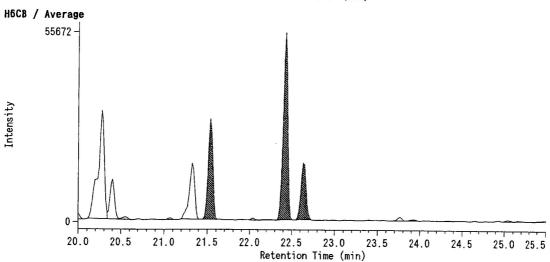


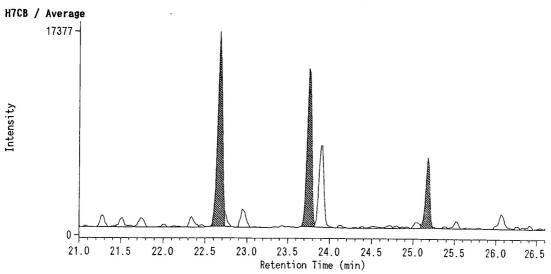


クロマトグラム7

試料 (ノンオルト Co PCB: T4CB、P5CB、H6CB)

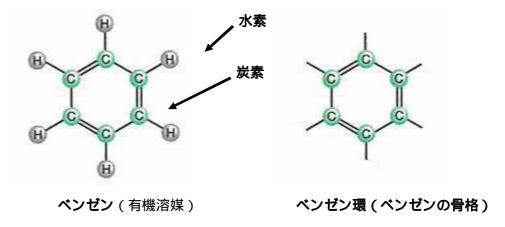




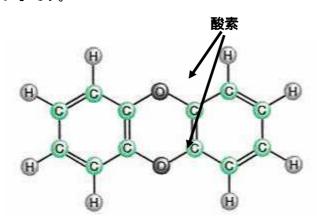


クロマトグラム8

試料(E/オルトCo PCB: P5CB、H6CB、H7CB)

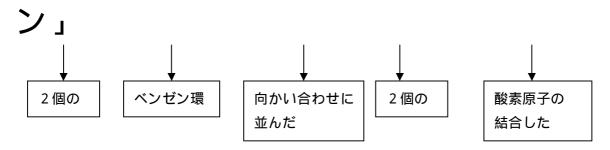


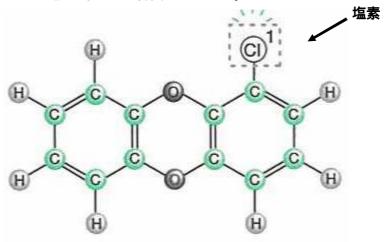
<添付資料2>ダイオキシンに係る基礎知識


以下に、ダイオキシンの構造や名称、関連する語句について基礎的な解説を示します。

〔ダイオキシンの構造〕

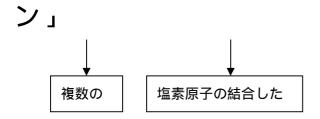
.よく知られた有機物質に、炭素原子6個と水素原子6個から出来ている「ベンゼン」があります。


. この「ベンゼン」2個と酸素原子2個から、構成されるのが下図の構造をもつ「ジベンゾパラジオキシン」です。


ジベンゾパラジオキシン

名称の意味合いは以下の通りです。

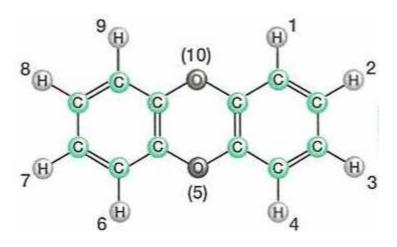
「ジ」「ベンゾ」「パラ」「ジ」「オキシ


.「ジベンゾパラジオキシン」の水素原子のいくつかが塩素原子と置き換わると、 通称『**ダイオキシン**』と呼ばれる物質となります。

ダイオキシン例(1つだけ置き換わったもの)

ダイオキシンの正式名称は、ポリクロロジベンゾパラジオキシンといいます。

「ポリ」「クロロ」「ジベンゾパラジオキシ


英語表記の「<u>Polychlorinated dibenzo p dioxin</u>」の下線部分をとって **PCDD**と略称されます。

最も狭義のダイオキシンはこの「ポリクロロジベンゾパラジオキシン」のことを指します。

[ダイオキシンの毒性]

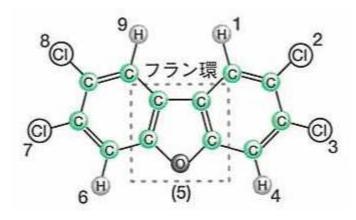
ダイオキシンは、4個以上の水素原子が塩素原子に置き換わると強い毒性を持ちますが、

塩素原子の置き換わる位置と、置き換わる数により、毒性に大きな差が生じます。

置き換わる位置の番号

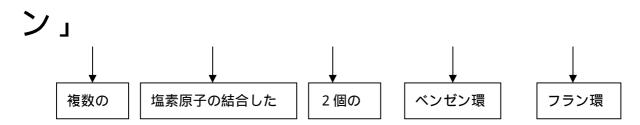
上図の、「2」「3」「7」「8」の位置に1つずつ塩素原子が置き換わったものが 最大の毒性を持ち、2,3,7,8 **テトラクロロジベンゾパラジオキシンと呼称され、2**,3,7,8 **-TCDD** と略称 されます。数字は塩素の置換位置を示し、置換した塩素の数により

P (ポリ=複数の) C D D から、T (テトラ=4つの) C D D、5 個の場合は、,,,,, - P (ペンタ=5つの) C D D、6 個の場合は、,,,,, - H (ヘキサ=6つの) C D D、7 個の場合は、,,,,,, - H (ヘプタ=7つの) C D D、8 個の場合は、O (オクタ=8つの) C D D と表記されます。


ヘキサとヘプタが紛らわしいので間に数字を入れ、T4CDD、P5CDD、H6CDD、H7CDD、O8CDDまたは、TeCDD、PeCDD、HxCDD、HpCDD、OCDDと表記するのが一般的です。

〔ダイオキシン類〕

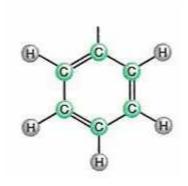
ダイオキシンと似た構造を持ち、強い毒性を持つ物質に、下記の2つが有り、行政的に は先のダイオキシンと併せてダイオキシン類と規定されています。


. ポリクロロジベンゾフラン

「ベンゼン」2個と、酸素原子1個と、数個の塩素原子から、下図の「**ポリクロロ ジベンゾフラン**」が出来ます。(真ん中の5角形を「フラン環」と呼びます。)

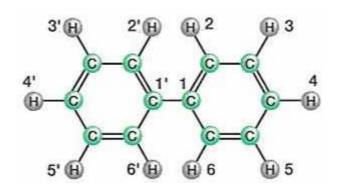
ポリクロロジベンゾフラン例

「ポリ」「クロロ」「ジ」「ベンゾ」「フラ

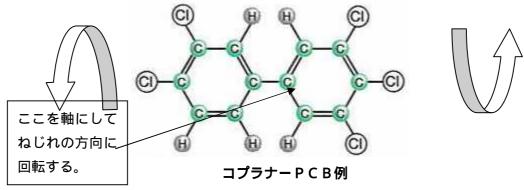


PCDD と同様に、「<u>Polychlorinated dibenzofurans</u>」の下線部分をとって **PCDF**と略称されます。

塩素が複数個置き換わった場合のPCDFの呼称は、PCDDと同様です。 上図のポリクロロジベンゾフラン例では、「2」「3」「7」「8」の位置に、計4つの 塩素が置き換わっているので、2,3,7,8-TCDFとなります。


. **コプラナー** P C B

PCB(ポリ塩化ビフェニル)のうち、その構造が平面になるものを指します。


フェニル基

(ベンゼンから水素原子が 1個とれたもの。)

ピフェニル

(フェニル基が2個くっ付いたもの。)

(3,3',4,4',5 ペンタクロロビフェニル,略称 PeCB)


「コプラナー」「ポリ」「クロロ」「ビ」「フェニ ル」

同一平面上の

複数の

塩素原子の 結合した 2個の (ジと道義) フェニル基

PCBは、「1'」「1」を軸にしてねじれの方向に回転しますが、「2'」「2」「6'」「6」に3つ以上の塩素原子が置き換わると、水素原子より大きい塩素原子同士がぶつかり、平面構造となり難いため、コプラナーPCBとは呼ばれません。平面構造をとらないPCBは、比較的毒性が低くダイオキシン類の中には含まれません。

塩素が複数個置き換わった場合のコプラナーPCBの呼称は、PCDDと同様です。

[毒性当量]

ダイオキシン類は、塩素原子の置き換わる**位置**及び**数**によって毒性の強さが異なります。 PCDD75種、PCDF135種、コプラナーPCB12種(全222種)のダイオキシン類化合物全てを実測して、その毒性を評価することは極めて困難なので、下記のような方法により毒性当量として算出し評価する方式をとっています。

ダイオキシン類のなかで最も毒性が強いとされる 2,3,7,8 -T C D D の毒性を 1 として、

他の化合物の毒性の強さを係数として表します。

これを**毒性等価係数:TEF** (2,3,7,8-T4CDD Toxity Equivalency Factor)と呼びます。

現在、ダイオキシン類 222 種の内、毒性が強いとされる 29 種について、毒性等価係数が定められています。(表 1 - 1)

各化合物の実測濃度に、毒性等価係数を乗ずると、その化合物の毒性が **2,3,7,8-TCDDに換算してどの程度の毒性に相当するか**が表されます。 これを**毒性当量: TEQ**(2,3,7,8-T4CDD Toxity Equivalency Quantity)と呼びます。

毒性があるとされる 29 種の化合物の毒性当量を合計して、その試料のダイオキシン量として評価します。

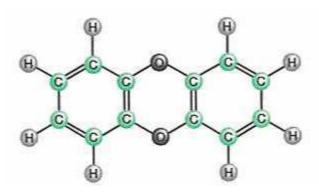
単位はg-TEQ/g(溶液の場合はg-TEQ/I)と表記されます。

(pg)

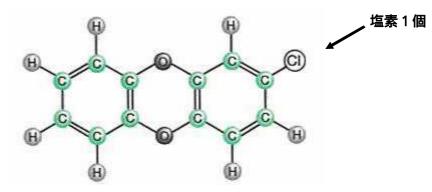
ピコグラムと呼びます。「 p (ピコ)」は重量の単位の g (グラム) に付く接頭語で、 1 p g は 1 兆分の 1 g を表します。

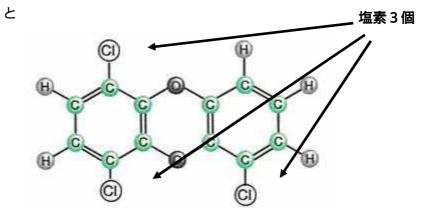
1 k g: 1キログラム = 1 gの1,000倍

1g:1グラム = 1gの1倍


1 mg: 1ミリグラム = 1gの1,000分の1

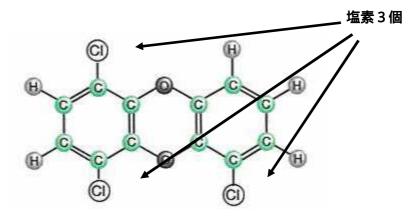
1 μ g : 1マイクログラム = 1 gの1,000,000分の1


1 n g: 1ナノグラム = 1 gの1,000,000,000分の1


1 p g : 1ピコグラム = 1 gの1,000,000,000,000,000

〔異性体〕

上図のジベンゾパラジオキシンの水素 (H) が、1 つでも塩素と置き換わると「**ダイオキシン (PCDD)」**となりますが、下図の


では、

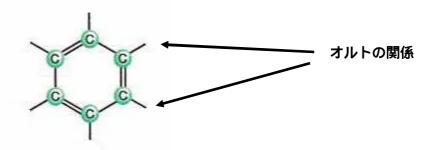
置き換わった塩素の**位置と数が全く違い**ますが、 どちらも同じ**「ダイオキシン(PCDD)」**の骨格を保っていま

すので、

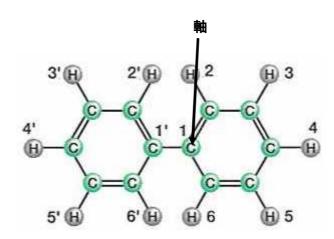
これを**「ダイオキシンの異性体」**と呼びます。

〔同族体〕

塩素3個 CI CI CI CI H


では

置き換わった塩素の**数は同じ**ですが、**位置が違い**ます。 このように位置が違っても塩素の数が同じものを、 「**ダイオキシンの同族体**」と呼びます。


同族体、異性体の定義は、ジベンゾフラン(PCDF)とコプラナーPCB(Co-PCB)の場合も、上に挙げたダイオキシン(PCDD)と同様です。

注:ダイオキシン類を扱う場合の「異性体」「同族体」の定義は、 化学一般で使用する場合と、厳密には異なるのでご注意下さい。

[オルト]

上図の様に「ベンゼン環」で塩素の置き換われる位置の隣同士の関係を、「オルト位置にある」もしくは「オルト位」と呼びます。

P C B の場合、上図「ビフェニル」の**軸となる「1'」「1」と隣同士の関係**に「**オルト**」を使用し、

「2´」「2」「6´」「6」のどれか1つに塩素が置き換わったものを、

「PCBの**モノ**(=1つの)**オルト体」**と呼び、

「2 ´」「2」「6 ´」「6」の**どれにも塩素が無い**ものを、

「PCBの**ノン**(=0の)**オルト体」**と呼び、

「2´」「2」「6´」「6」のどれか**2つ**に塩素が置き換わったものを、

「PCBの**ジ**(=2つの)**オルト体」**と呼びます。

オルト位に3つ以上の塩素が置き換わると、前述の通り「2´」「2」もしくは「6´」「6」のどちらかで塩素原子同士がぶつかり、 平面状態にはなれなくなるので、コプラナーPCBではなくなります。 なお、現在の定義ではジオルト体も、コプラナーPCBとして扱いません。

3.8. まとめ

3.8.1. 結論

水処理試験の結果より以下の事項が明らかとなった。

サイクロン分級器による分級砂には細粒分の付着が多い

スパイラル分級器に流入する前に、海藻、ビニールゴミ等の浮上する 異物を取除く工程が必要

浚渫排水は"分級 水処理 脱水処理"の各工程において連続処理が 可能

脱水処理後の浚渫土は第4種b発生土に当たり、埋立等の有効利用可能、また塩化物イオン濃度は1.16%

浚渫どぞぷかの固化処理の際、分級砂を混合させると強度増加に有効 大碆東側地点の水底土砂にはダイオキシン類等の有害な物質は含まれ ない

3.8.2. 課題点

水処理試験の結果より以下の課題点が抽出された。

土砂以外の海底堆積物(ゴミ、海藻など)の分別法(前処理工程)を 検討

水処理作業マニュアルの検討

4. 沈木回収試験

4.1. 試験目的

三崎川河口域には洪水時等に流出した流木が沈木として堆積している。堆積した沈木は魚の棲みか等になる一方、漁業の妨げや景観を損なうなどの問題が生じる場合がある。また沈木の堆積箇所には、湾内の濁りの原因となる泥土の堆積も予測される。従って自然再生事業において泥土の除去を行うことを想定した場合、泥土上又は泥土中に堆積している沈木の除去が必要になると考えられる。本実証試験の一環として沈木の除去試験を実施した。

また沈木の除去試験では実際に三崎川河口域に堆積する沈木を回収・除去することにより環境改善にも努めた。

4.2. 沈木回収試験フロー

沈木回収試験の流れを図9に示す。

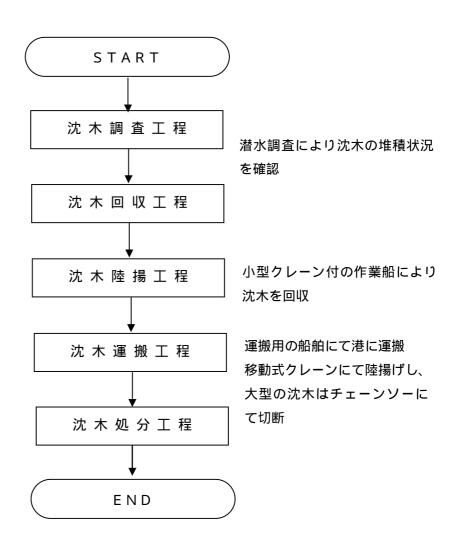


図4-2-1 沈木回収試験フロー図

4.3. 沈木回収試験状況

写真43-1~写真43-12に沈木回収試験の状況を示す。

写真 4-3-1 沈木状況 1

写真432 沈木状況2

写真433 沈木状況3

写真434 沈木状況4

写真435 沈木状況5

写真 4-3-6 泥土堆積状況

写真 4-3-7 沈木回収状況

写真438 沈木回収状況

写真439 沈木積込状況

写真 4 · 3 · 10 沈木積込状況

写真 4-3-11 沈木陸揚げ状況

写真 4-3-12 沈木処分状況

4.4. 沈木回収試験結果

4.4.1. 沈木の堆積状況

沈木は試験対象海域(大碆東側海域)の千尋崎よりに多く堆積していた。沈木は密集した状態ではなく写真43-1から写真435に示すように1本から数本ずつ堆積している。また部分的に海底に堆積した泥土から出ている状態のものもある。写真43-10に示す沈木の黒い部分は土中に埋まっていた部分である。

また沈木の大きさは、長さ 2m 以下のものが多いが、中には写真 4 3 7 に示すような全長 10m 以上のものもある。

4.4.2. 泥土の堆積状況

大碆の東側より千尋崎よりに泥土の堆積が確認される。写真436に示すように泥土の堆積の中には、植物の根、枝のようなものが確認できる。

大碆と千尋崎の中間付近の底質は、表面は砂であるが触ると濁りを発する。

4.4.3. 沈木の回収方法

沈木回収には浚渫試験で使用した小型クレーン付の作業船を用いた。大型の沈木はクレーンもしくはウインチを利用して回収した。また小型の沈木が点在している場合は写真 4 3 9、写真 4 3 40 にあるワイヤーモッコを利用して沈木を回収した。

4.5. まとめ

4.5.1. 結論

沈木回収試験の結果より以下の事項が明らかとなった。

沈木の堆積状況は単体で沈んでいるもの、岩陰に密集している小型の ものを確認

試験回収により確認された沈木はすべて回収(埋まったものなど回収 不可のものを除く)

4.5.2. 課題点

沈木回収試験の結果より以下の課題点が抽出された。

泥土の浚渫時に埋まった沈木が現れる可能性が高く、浚渫と沈木回収 の平行作業が必要

沈木回収マニュアルの検討